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ABSTRACT

In this paper, we study the problem of unimodular code design

to improve the detection performance of statistical multiple-

input multiple-output (MIMO) radar systems. To this end, we

consider a system transmitting arbitrary unimodular signals

and a discrete-time formulation of the problem. Due to the

complicated form of the performance metric of the optimal

detector, we resort to the Bhattacharyya distance for code de-

sign. We devise a novel method based on the majorization

of matrix functions to obtain solutions to the constrained de-

sign problem. Simulation results show the effectiveness of the

proposed method.

Keywords: Bhattacharyya distance, code design,

majorization-minimization, MIMO radar, unimodular sig-

nals.

1. INTRODUCTION

MIMO radar has recently been a topic of interest for many re-

searchers. Angular diversity (in statistical MIMO1) and wave-

form diversity (in collocated MIMO) provide more degrees of

freedom for MIMO systems as compared with conventional

systems. The provided degrees of freedom lead to perfor-

mance improvement in target detection, parameter estimation,

target identifiability, clutter rejection, as well as spatial and

temporal beampattern [1].

Waveform design for MIMO radars plays an important

role in utilizing the available resources of the system. Trans-

mit waveforms can be optimized to achieve performance im-

provement in detection, estimation, target classification, iden-

tification, and beampattern synthesis [1]. Waveform design

for statistical MIMO radars is mainly concerned with detec-

tion performance improvement. In [2], a unified optimiza-

tion framework has been developed for code design in MIMO

radars with orthogonal transmission using information theo-

retic criteria. Regarding MIMO radars employing arbitrary

signals, reference [3] considers space-time code design for
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1Also known as MIMO Radars with widely separated antennas.

the systems using mutual information criterion (see also [4]).

Moreover, diversity-integration trade-off has been addressed

in [3]. In [5], a similar problem has been taken into account

via employing the Kullback-Leibler (KL) divergence as a de-

sign metric. The cited paper uses a weighted sum of the KL-

divergences associated with probability density functions for

observations in the detection problem. The authors of [6] con-

sider both mutual information and KL-divergence as design

metrics for a problem related to that of [3]. Note that in a

majority of MIMO radar code design studies in the litera-

ture, no constraints (on codes) other than energy constraint

are considered. Additionally, identical statistics for the tar-

get and interference have been assumed at various receivers.

However, designing unimodular codes is of practical interest

due to avoiding non-linear effects and employing the available

power at the transmitter [7]. Furthermore, target and interfer-

ence possess different statistics at various receivers.

In this paper, we study the problem of code design for

MIMO radars with arbitrary unimodular signals. Under the

Gaussian assumption, we present the optimal detector for ar-

bitrary covariance matrices of the target and interferences at

various receivers. The performance metric of the detector is

too complicated to be used for code design; hence we resort

to the Bhattacharyya distance as the design metric. In Sec-

tion 2, we state the code design problem with unimodular-

ity constraint. Next we devise a novel method based on the

majorization-minimization (MaMi) approach to obtain a so-

lution to the non-convex design problem (see Section 3). We

show that each iteration of the proposed method can be han-

dled via solving a unimodular quadratic program (UQP). This

makes the proposed method quite fast as there exists an effi-

cient method to tackle the UQP. Finally, Section 4 contains

numerical examples and discussion.

2. DESIGN PROBLEM

We consider a MIMO system with Nt transmit antennas

(transmitting arbitrary waveforms) and Nr receive antennas.

Let am = [am1 am2 ... amN ]T denote the transmit code of

the mth transmitter. The problem of detecting a target (in the

cell under test) at the kth receive antenna can be expressed
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as [3] [8]:
{
H0 : rk = nk

H1 : rk = Aαk + nk

, k = 1, 2, ..., Nr (1)

where rk denotes the discrete-time received signal at the kth

receive antenna, A = [a1 a2 ... aNt
] ∈ C

N×Nt is the code

matrix, αk ∈ C
Nt describes target scattering effects associ-

ated with various transmitters at the kth receive antenna, and

nk denotes the interference at the kth receive antenna.

Let Mk = E{nkn
H
k } and Rk = E{αkα

H
k }. The opti-

mal detector corresponding to the above problem (assuming

Gaussian target and interference) is obtained by applying the

estimator-correlator theorem [9]:

Tc =

Nr∑

k=1

δk∑

n=1

(
λkn

1 + λkn

)
|ykn|2

H0

≶
H1

η (2)

with {λkn}δkn=1 being the nonzero eigenvalues of the matrix

Hk , M
−1/2
k ARkA

HM
−1/2
k , η being the detection thresh-

old, and yk = VH
k M

−1/2
k rk. Herein Vk represents the ma-

trix of eigenvectors associated with {λkn}.

We aim to find the optimal code matrix A for improve-

ment of the detection performance. The performance met-

rics of the detector in (2) can be obtained using the results

of [10]. However, the corresponding expressions appear to

be too complicated for code design and we do not provide

them herein (see [10]). Therefore, we consider Bhattacharyya

distance as an information-theoretic criterion for code design.

Note that the Bhattacharyya distance provides an upper bound

on the probability of false alarm Pfa, and at the same time

yields a lower bound on the detection probability Pd [11].

Therefore, maximization of the Bhattacharyya distance mini-

mizes the upper bound on Pfa and, at the same time, it maxi-

mizes the lower bound on Pd.2 The Bhattacharyya distance B
for two multivariate Gaussian distributions, CN (0,Σ1) and

CN (0,Σ2), can be expressed as [11]:

B = log

(
det(0.5(Σ1 +Σ2))√
det(Σ1) det(Σ2)

)
. (3)

By applying (3) to the problem in (1) we obtain

B =

Nr∑

k=1

(
log det (I+ 0.5Hk)− 0.5 log det (I+Hk)

)
. (4)

Consequently, the problem of unimodular code design via

maximization of B can be cast as:




max
A,{Hk}

Nr∑

k=1

(
log det (I+ 0.5Hk)− 0.5 log det (I+Hk)

)

subject to Hk = M
−1/2
k ARkA

HM
−1/2
k , ∀k

|[A]m,n| = 1, ∀ (m,n)
(5)

2This is due to the fact that Pd ≥ 1− γ−1/2e−B and Pfa ≤ γ1/2e−B

where γ is the likelihood threshold [12].

Note that related unconstrained design problems for special

cases in which Rk = I or Mk = M,Rk = R were consid-

ered in previous works using KL-divergence, J-divergence,

and mutual information [3, 5, 6]. In what follows, we devise

a novel method based on the majorization of matrix functions

to tackle the above non-convex problem.

3. THE PROPOSED METHOD

We use the majorization-minimization (or minorization-

maximization) technique to tackle the problem in (5).

Majorization-minimization (MaMi) is an iterative technique

that can be used for obtaining a solution , i.e. a stationary

point, of the general minimization problem

min
z

f̃(z) subject to c(z) ≤ 0 (6)

where f̃(.) and c(.) might be non-convex functions. Each it-

eration (say the lth iteration) of MaMi consists of two steps

(see Fig. 1) [13]:

• Majorization Step: Finding p(l)(z) such that its minimiza-

tion is simpler than that of f̃(z), and p(l)(z) majorizes f̃(z):

p(l)(z) ≥ f̃(z), ∀z and p(l)(z(l−1)) = f̃(z(l−1)) (7)

with z(l−1) being the value of z at the (l − 1)th iteration.

• Minimization Step: Solving the optimization problem,

min
z

p(l)(z) subject to c(z) ≤ 0 (8)

to obtain z(l).

We begin by substituting Hk in the objective function of

(5) and rewriting the first logarithmic term (for each k):

log det
(
I+ 0.5M

−1/2
k ARkA

HM
−1/2
k

)
= (9)

log det
(
I+ 0.5R

1/2
k AHM−1

k AR
1/2
k

)

where we have used a standard determinant property. Now

we reformulate the above expression as a convex function of

another variable. Let Xk = I+0.5R
1/2
k AHM−1

k AR
1/2
k . By

using the matrix inversion lemma we have

X−1
k = I− 0.5R

1/2
k AH

(
0.5ARkA

H +Mk

)−1
AR

1/2
k .
(10)

Next observe that for U = [INt
0(N+Nt)×Nt

]T and

Bk ,

[
I (1/

√
2)R

1/2
k AH

(1/
√
2)AR

1/2
k Mk + 0.5ARkA

H

]
(11)

one can write UHB−1
k U = Xk. Therefore, the expression in

(9) can alternatively be written as

log det
(
UHB−1

k U
)
. (12)

5320



Fig. 1. An illustration of the MaMi technique.

Lemma. Let U denote a full column-rank matrix. The func-

tion log det
(
UHZ−1U

)
is convex with respect to (w.r.t.) Z ≻

0.

Proof. see [14].

Note that Bk ≻ 0 which follows from the fact that Xk ≻
0. Consequently, exploiting the convexity of the expression

in (12) (via the above lemma), we obtain the following mi-

norization for the matrix function in (12) at Bk = B̃k using

its supporting hyperplane:

log det
(
UHB−1

k U
)
≥ log det

(
UHB̃−1

k U
)

(13)

+tr{Tk(Bk − B̃k)}
where Tk can be obtained, e.g., by employing the results of

[15] as:

Tk = −B̃−1
k U

(
UHB̃−1

k U
)−1

UHB̃−1
k . (14)

As to the second term of the objective function in (5) (for

each k), note that −0.5 log det (I+Hk) is convex w.r.t. Hk.

Consequently, a minorizer of this matrix function at H̃k can

be obtained using its supporting hyperplane as follows

− log det (I+Hk) ≥ − log det
(
I+ H̃k

)
(15)

− tr{(I+ H̃k)
−1(Hk − H̃k)}.

In sum, using (13) and (15), the following optimization

problem has to be solved for the (l + 1)th iteration of the

proposed algorithm:




max
A,{Hk}

Nr∑

k=1

(
tr{T(l)

k Bk} − 0.5 tr{
(
I+H

(l)
k

)−1

Hk}
)

subject to Hk = M
−1/2
k ARkA

HM
−1/2
k , ∀k

|[A]m,n| = 1, ∀ (m,n)
(16)

Let

Tk ,

[
Tk,11 Tk,12

TH
k,12 Tk,22

]
. (17)

Using this notation, the objective in (16) can be explicitly ex-

pressed as a function of A:

∑Nr

k=1 tr{0.5AHT
(l)
k,22ARk}+ tr{ 1√

2
R

1/2
k T

(l)
k,12A}

−0.5 tr{AHM
−1/2
k

(
I+H

(l)
k

)−1

M
−1/2
k ARk}. (18)

Ultimately, the vectorized version of the optimization in

(16) can be obtained via (18) as well as a standard prop-

erty of the Kronecker product, viz. tr{X1X2X3X4} =
vecH(XH

1 )
(
XH

4 ⊗X2

)
vec(X3). Consequently we obtain

{
max

ã

ãHQ
(l)
B ã+ 2ℜ

(
(q

(l)
B )H ã

)

subject to |ãw| = 1, ∀w
(19)

where ã = vec(A), q
(l)
B ,

∑Nr

k=1
1√
2
vec(Tk,21R

1/2
k ), and

Q
(l)
B ,

Nr∑

k=1

(
0.5Rk ⊗

(
T

(l)
k,22 − 0.5Y

(l)
k

))
(20)

with Y
(l)
k = M

−1/2
k

(
I+H

(l)
k

)−1

M
−1/2
k .

Remark: Note that Tk in (14) is negative definite for all

k due to the fact that Bk ≻ 0, ∀k. Therefore, Tk,22 in (17) is

negative definite as well. Furthermore, observe that Y
(l)
k ≻ 0.

Now, considering properties of the Kronecker product, it fol-

lows that Q
(l)
B is negative definite for all l. Therefore, in the

case of unconstrained design, in which an energy constraint

‖ã‖22 ≤ e is considered in lieu of the unimodularity constraint

in (19), the (l+ 1)th iteration of the proposed algorithm con-

sists of solving a simple quadratic convex problem. �
The constrained optimization problem in (19) is NP-hard

in general [16]. However, a solution to this problem can be

obtained using the iterative method discussed in [2,16]. More

concretely, the problem in (19) can be equivalently written as

the following UQP:
{

max
ã

âHJ
(l)
B â

subject to |ãw| = 1, ∀w
(21)

where â = [ã 1]T , J
(l)
B = µ(l)INNt+1 +K

(l)
B , and

K
(l)
B =

[
Q

(l)
B q

(l)
B

(q
(l)
B )H 0

]

with µ(l) > |λmin(K
(l)
B )|. The code vector ã at the (l +

1)th iteration of the proposed algorithm can be obtained by

running the following iteration until convergence [16]:

ã(p+1) = exp
(
j arg(ă(p))

)
(22)

where ă(p) represents the vector containing the first NNt en-

tries of J
(l)
B â(p).

The steps of the proposed algorithm are summarized in

Table 1. Note that the code matrix A can be obtained from

the solution ã using A = vec−1(ã).

4. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we present numerical examples to examine

the performance of the proposed algorithm. In addition to
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Table 1. The proposed algorithm for maximizing the Bhat-

tacharyya distance under unimodularity constraint

Step 0: Initialize ã with a random vector in CNNt and set the iteration

number l to 0.

Step 1: Solve the UQP in (21) via the use of the iterations in (22); set

l← l+ 1.

Step 2: Compute Q
(l)
B

and q
(l)
B

.

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied,

e.g. ‖ã(l+1) − ã(l)‖2 ≤ ξ for some ξ > 0.
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P
d
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Fig. 2. ROC of the coded system, the uncoded system, and

the system with random coding.

the comparison of the detection performance of the optimally

coded system (the system that is coded using the proposed

method and referred to as coded system in what follows), a

numerical study of diversity-integration trade-off is provided.

We consider a MIMO system with Nr = 2 and the code

length N = 10. For the interference at the kth receiver, it is

assumed that [Mk]l,l′ = pint,kρ
|l−l′|
k with parameters pint,k

and ρk. For the target, we let [Rk]l,l′ = ρ̂
|l−l′|
k with parameter

ρ̂k. Moreover, in the case of unconstrained design, we set the

total transmit energy e equal to NNt.

We investigate the detection performance of the coded

system, the uncoded system (employing a scaled version of

the all-one matrix as the code matrix A), and the system with

random coding for the number of transmitters Nt = 2, tar-

get parameters ρ̂k = (0.3, 0.2), and interference parameters

ρk = (0.8, 0.7) as well as pint,k = (10, 10). The ROC

is used to evaluate the detection performance of the system

based on analytical expressions for the probability of detec-

tion and false alarm (see eqs. (32)-(34) in [10]). The results

for the coded system (both unconstrained and constrained),

the uncoded one as well as the system with random coding

are plotted in Fig. 2. For the random coding system, the av-

erage result is depicted considering 100 randomly generated

A with i.i.d Gaussian entries. It is observed that employing

the proposed method for the system leads to a significant per-

formance improvement as compared to the uncoded and ran-
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Fig. 3. The rank of A versus e/pint.

domly coded systems. Also, only a minor performance degra-

dation is observed for unimodular code design as compared to

the unconstrained design. Note that, in this example, the un-

coded system behaves rather poorly. To get some insight into

this observation, we remark on the fact that the code matrix

for the uncoded system, i.e., Auncoded is a scaled version of

all-one matrix; hence the covariance of the target component

at the first receiver, i.e., AuncodedR1A
H
uncoded, is rank-one.

Let AuncodedR1A
H
uncoded = uuncodedu

H
uncoded. The afore-

mentioned observation can be explained via noting that the

cross-correlations of uuncoded with the principal eigenvectors

of M1 and M2 are equal to 0.9922 and 0.9851, respectively.

In other words, the energy of the target component (at the first

receiver) for the uncoded system is concentrated in the direc-

tion in which the interferences have their maximum (negative)

effect. A similar argument holds for the second receiver. On

the other hand, it can be verified that for the coded system,

the energy of the target components (at the receivers) is put in

the direction of the minor eigenvectors of the interferences.

Next we address the diversity-integration trade-off for a

MIMO system with Nt = 4 and the other parameters (except

for pint,k) identical to those of Fig. 2. Fig. 3 depicts the rank

of the optimal code matrix A versus e
pint

. The figure also

shows the case of Auncoded and randomly generated A. Here

we keep the transmit energy e constant and plot the ranks via

changing pint = pint,k. Note that e
pint

shows the variations of

SNR at receivers. The rank of A is considered as the diver-

sity order of the system and the integration refers to putting

more energy on the only diverse path (see [3] for details). It

is seen form Fig. 3 that by increasing e
pint

, the diversity or-

der of the system increases. Indeed, in high SNR regimes,

more diversity is preferable whereas in low SNR regimes, in-

tegration leads to a better performance. As expected, for the

constrained design, the rank of A behaves slightly differently.

The Auncoded is always rank-one; whereas the randomly gen-

erated A has full rank (see [17]). We finally remark on the

fact that not only the rank of A but also the allocated energy

to diverse paths influences the detection performance.
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