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ABSTRACT

The current sparse representation framework is to decouple it as t-
wo subproblems, i.e., alternate sparse coding and dictionary learning
using different optimizers, treating elements in bases and codes sep-
arately. In this paper, we treat elements both in bases and codes ho-
mogenously. The original optimization is directly decoupled as sev-
eral blockwise alternate subproblems rather than above two. Hence,
sparse coding and bases learning optimizations are coupled together.
And the variables involved in the optimization problems are parti-
tioned into several suitable blocks with convexity preserved, making
it possible to perform an exact block coordinate descent. For each
separable subproblem, based on the convexity and monotonic prop-
erty of the parabolic function, a closed-form solution is obtained.
Thus the algorithm is simple, efficient and effective. Experimental
results show that our algorithm significantly accelerates the learning
process.

Index Terms— Dictionary learning, coordinate descent, sparse
coding

1. INTRODUCTION

Sparse representation has now been widely used in visual tasks,such
as image classification [1, 2, 3], image inpainting [4], image anno-
tation [5, 6, 7]. By coding under over-complete bases, it makes the
attained sparse codes capable of representing data more adaptively.
Dictionary learning thus involves accordingly, which tries to build
dictionary to find atoms identifying the best causes of the target data

At early stages, sparse coding is typical cast as sparse approx-
imation with l0-norm constraint optimization, which is solved by
methods such as Matching Pursuit [8] and Orthogonal Matching Pur-
suit [9]. Later, its convex relaxation with l1-norm is widely accept-
ed [10]. Hence, the solution to sparse coding becomes l1-regularized
least square optimization problem (L1-LS). Existing approaches to
solving L1-LS include active-set methods, such as Homotopy [11],
LARS [12], and feature-sign search [13], gradient methods (also
called first-order methods or iterative soft-thresholding methods),
such as operator-splitting [14], iterative splitting and threshold-
ing [15], and fixed-point iteration [16]. Active-set methods are effi-
cient for small or medium-sized problems, or when requiring very
sparse solution. Gradient methods need more iterations especially
when the solution is not very sparse or the initialization is not ideal.
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Meanwhile, dictionary learning can be considered to optimize a
least squares problem with quadratic constraints (L2-LS). Current-
ly, effective algorithms involve MOD [17], K-SVD [18], gradient
descent [19], and Lagrange-Dual [13]. MOD updates all the entries
of the bases simultaneously, but it is not warranted to converge.
K-SVD sequentially updates the bases column-wise together with
the corresponding sparse codes using singular value decomposition
(SVD), which needs to consume a lot of computation. Gradient
descent often shows slow convergence.

Here we consider simultaneous sparse coding and dictionary
learning commonly formulated as alternating L1-LS and L2-LS
optimization problems. Among existing approaches, the feature-sign
search/ lagrange Dual (FS–LD) algorithm [13] speeds up the sparse
coding procedure significantly and achieves optimum performance
up to now. However, the cyclical sign feedback and adjustment actu-
ally abases its efficiency in feature-sign search. As for the Lagrange
Dual algorithm, the adopted Newton’s method needs several itera-
tions with low convergence rate. Besides, the presence of the matrix
inversion will introduce numerical difficulties in some situations.

The problem is, instead, recast under a much simpler scheme,
i.e., blockwise coordinate descent. Coordinate descent algorithms
actually were proposed in solving the sparsity induced least square
minimization long ago. However, its powerful performance, i.e., ef-
ficiency and effectiveness, haven’t been fully appreciated. There are
only related work in other domains such as non-negative matrix fac-
torization [20, 21, 22]. We can see how it will be revealed by ap-
propriate partition of the variables and resort to simple update rules.
This is the major contribution of this paper. In short, if we try to fo-
cus on one basic single variable, a direct closed-form solution will be
obtained based on the property of a much simpler univariate parabol-
ic function. The analytical solutions of several variables can be fur-
ther unified into a parallel vector formula according to the separabil-
ity of the objective function. In addition, this optimization scheme is
suitable for both L1-LS and L2-LS with only slight modification-
s. Hence, the proposed algorithm is simple, efficient and effective
with theoretically warranted convergence. We demonstrate that our
algorithm significantly accelerates the solution to sparse coding and
dictionary learning, and has superior solutions especially in the case
of relatively small number of samples or seeking for comparatively
much sparser codes.

The rest of this paper is organized as follows. In Section 2 prob-
lem statement is reviewed briefly. The proposed algorithm in solving
L1-LS and L2-LS as well as convergence analysis is elaborated in
Section 3. Section 4 shows experimental results and analysis. Dis-
cussions and conclusions are drawn in Section 5.
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2. PROBLEM STATEMENT

Let X ∈ RD×N be the input data matrix, where D and N are the
dimension and number of the data vectors, respectively. Let B ∈
RD×K and S ∈ RK×N denote the basis matrix and corresponding
sparse codes (also called coefficient matrix), respectively, where K
is the number of the bases. Sparse representation aims to solve the
following optimization problem:

min
B,S

f(B,S) = ‖X −BS‖2F + 2α‖S‖1 (1)

s.t. ‖B•i‖2 ≤ 1, ∀i = 1, 2, . . . , K.

Here, A•n and Ak• denote the n-th column and k-th row vectors of
matrix A, respectively. The l1-norm regularization term is adopted
to enforce sparsity of S and α is the regularization parameter to con-
trol the tradeoff between fitting goodness and sparseness. It can be
decoupled into the following two optimization subproblems which
can be solved by alternating minimizations [13].

L1-LS minimization problem:

min
S
f(S) = ‖X −BS‖2F + 2α‖S‖1. (2)

L2-LS minimization problem:

min
B

f(B) = ‖X −BS‖2F s.t.‖B•i‖2 ≤ 1, ∀i = 1, 2, . . . , K. (3)

3. PROPOSED ALGORITHM FOR SPARSE CODING AND
DICTIONARY LEARNING

Consider the L1-LS minimization problem first. If we concentrate
on the basic element, i.e., one single variable, with the remaining
ones fixed at a time, the objective functions in (2) reduces to a much
simpler univariate parabolic function. Thus, a direct closed-form
solution minimizing the corresponding cost function can be easi-
ly obtained based on the convexity and monotonic property of the
parabolic function. Moreover, according to the separability of the
objective function, the analytical solutions of several independent
variables (in this case are the entries in the same row) can be u-
nified into higher block formula, making parallel computation and
further acceleration possible. In other words, upon such block par-
tition mode, an exact block coordinate descent can be carried out
effectively. As for the L2-LS minimization problem, this strategy
is also applicable. In this sense, the solutions to these two optimiza-
tion problem can be tackled under the same scheme. The specific
block partition modes and corresponding update rules of finding s-
parse codes and learning bases are validated by the following two
theorems, respectively.

3.1. L1-LS minimization for finding sparse codes

Theorem 1. ∀k ∈ {1, 2, . . . ,K}, with {Sp•,p=1,2,...,K} /Sk• and
B fixed, the minimization of (2) with respect to the single row has
the closed-form solution

Sk• = arg min
Sk•

{
‖X −BS‖2F + 2α‖S‖1

}
= max

{
[B•k]

T
X−[B•k]

T
BS̃

k
, α
}

+min
{
[B•k]

T
X−[B•k]

T
BS̃

k
,−α

}
, (4)

where S̃
k
p• =

{
Sp•, p 6= k
0, p = k

.

Proof. The objective function in (2) can be rewritten as

f(S) = ‖X −BS‖2F + 2α‖S‖1
= tr

{
X

T
X−2X

T
BS+S

T
B

T
BS

}
+2α‖S‖1

= tr
{
X

T
X
}
− 2

N∑
n=1

[X
T
B]n•S•n

+
N∑

n=1

S
T

•nB
T
BS•n + 2α

K∑
k=1

N∑
n=1

|Skn|, (5)

where tr {A} represents the trace of matrix A.
Ignoring the constant term tr

{
XTX

}
, the objective function of

S•n reduces to (6) with B fixed.

f(S•n) = S
T

•nB
T
BS•n − 2[X

T
B]n•S•n + 2α

K∑
k=1

|Skn|. (6)

And then the objective function of Skn in (6) reduces to (7) with
B and {S1n,S2n, . . . ,Skn} /Skn fixed.

f(Skn) = S
2
kn[B

T
B]kk + 2α |Skn|

+2Skn

{ K∑
l=1,l 6=k

[B
T
B]klSln − [B

T
X]kn

}
= S

2
kn[B

T
B]kk + 2α |Skn| − 2SknHkn, (7)

where Hkn=[BTX]kn−
K∑

l=1,l 6=k

[BTB]klSln.

When ‖B•k‖1 > 0,f(Skn) is piece-wise parabolic function with
[BTB]kk = 1. Based on the convexity and monotonic property of
the parabolic function, it is not difficult to know that f(Skn) reaches
the minimum at the unique point.

Skn = max
{
Hkn, α

}
+min

{
Hkn,−α

}
. (8)

Furthermore,given that the optimal value for Skn does not depend
on the other entries in the same row, each whole row of S can be
optimized simultaneously. That is

Sk• = max
{
Hk•, α

}
+min

{
Hk•,−α

}
Q.E.D (9)

3.2. L2-LS minimization for learning dictionary

Theorem 2. ∀k ∈ {1, 2, . . . ,K}, with S and {B•q,q=1,2,...,K}/B•k
fixed, the constrained minimization problem of (3) with respect to
the single column has the closed-form solution

B•k = arg min
B•k
‖X −BS‖2F

=
X[Sk•]

T − B̃
k
S[Sk•]

T∥∥∥X[Sk•]
T − B̃

k
S[Sk•]

T
∥∥∥
2

, (10)

where B̃
k
•p =

{
B•p, p 6= k
0, p = k

.

Proof. Without the sparseness regularization term in (2) and addi-
tional constraints in (3), Sk• and B•k are dual in objective function
‖X −BS‖2F for ∀k ∈ {1, 2, . . . ,K}. Using similar derivation pro-
cedures and additional projection to the feasible region, this can be
proven.

3.3. Overall algorithm

Our algorithm for sparse coding and bases learning is shown in Al-
gorithm 1. Here,1 ∈ RK×K is a square matrix with all elements 1,
I ∈ RK×K is the identity matrix, and � indicates element dot prod-
uct. By iterating S and B alternately, the sparse codes are obtained,
and the corresponding bases are learned.
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Algorithm 1 Blockwise Coordinate Descent for Dictionary Learn-
ing
Require: Data matrix X ∈ RD×N andK

1: B←rand(D,K),B•k=
B•k

‖B•k‖2
∀k,S←zeros(K,N)

2: iter = 0
3: while (f(iter)−f(iter + 1))/f(iter)>1e−6 do
4: iter ← iter + 1
5: Update S:
6: Compute A = (BTB)� (1− I) and E = BTX
7: for k = 1;k ≤ K;k++ do
8: Sk• = max {Ek•−Ak•S, α}

+ min {Ek•−Ak•S,−α}
9: end for

10: Update B:
11: Compute G = (SST )� (1−I), W = XST

12: for k = 1;k ≤ K;k++ do

13: B•k =
W •k −BG•k

‖W •k −BG•k‖2
14: end for
15: Update the objective function:
16: f(iter) = ‖X −BS‖2F + 2α‖S‖1
17: end while
18: return B, and S

3.4. Analysis and Comment

Theorem 3. The objective function in (1) is nonincreasing under
the update rules given in (4) and (10).

Proof. Since the exact minimization point is obtained by (4) or (10),
each operation updates S1•, . . . ,SK•,B•1, . . . ,B•K alternately, it
monotonically decreases the objective function in (1). Considering
that the objective function is obviously bounded below, it converges.
Q.E.D.

4. EXPERIMENTAL RESULTS

The performance of our blockwise coordinate descent for dictionary
learning (BCDDL) algorithm is evaluated on three common datasets:
natural images [23], Caltech-101 [24], and Scene 15 [25]. All exper-
iments are implemented on PC with Intel Core i5 M560 2.67GHz
CPU, 8GB RAM. The software environment is Windows 7 and Mat-
lab 7.12.

For natural images dataset, patches are randomly selected. In
each patch, every pixel value forms a vector to represent this patch.
For Caltech-101 and Scene 15, 16 × 16 size patches are densely
sampled from images and are then represented by SIFT descriptor
with grid size 4× 4. Given that FS–LD algorithm significantly out-
performs other approaches [13], a systematic evaluation and com-
parison mainly between proposed method and FS–LD algorithm are
carried out with regard to their performance in terms of running time,
convergence rate, learning bases in certain cases, and the like.

4.1. Running time for learning bases and finding sparse codes

In this section, the algorithm is assessed on natural images dataset
with a set of 1000 input vectors (each 14× 14 pixels) randomly se-
lected. α is set to 0.2. The number of bases is 512. We compare our
algorithm with FS–LD algorithm. To avoid being influenced by ran-
dom variations of environment, the experiment is repeated 20 times.
In each experiment, 100 iterations are operated to optimize bases
and sparse codes alternately. Figure 1 shows the running time per it-
eration. Figure 1 (a) shows the running time for L2-LS. Figure 1 (b)

(a) L2-LS (b) L1-LS

Fig. 1. Comparison of running time per iteration between BCDDL
and FS–LD algorithm.

Fig. 2. Comparison of the convergence between BCDDL and FS–
LD algorithm.

shows the running time for L1-LS. It is obvious that our algorith-
m runs much faster for both L2-LS and L1-LS per iteration. The
running time of FS–LD algorithm is especially long in the first few
iterations, because the energy is scattered in the initial stages which
requires more feedback and adjustment to determine the response of
the sparse codes. The average ratio of running time per iteration of
FS–LD algorithm to that of ours is about 12.98 and 31.86 forL2-LS
and L1-LS, respectively.

4.2. Convergence rate

The speed of convergence is another important factor to evaluate al-
gorithms. Here, a set of 1000 input vectors (each 14 × 14 pixels)
randomly sampled from natural images dataset are used. α is set
to 0.2, the number of bases is 512, and 100 iterations are operated
to learn bases and find sparse codes alternately. Figure 2 shows the
convergence rate comparison between these two algorithms, where
our algorithm converges much faster. Hence, when combining the
experimental results in Figure 1 and 2, it demonstrates that our algo-
rithm has fast convergence with low cost per iteration.

4.3. Total time for dictionary learning

With respect to the running time per iteration, our BCDDL algorithm
runs much faster than FS–LD algorithm. We then evaluate the sepa-
rate stage for learning dictionary on the above three datasets, which
is the core concern in training. A set of 1000 input vectors (each
14 × 14 pixels for natural images and 128-D SIFT for Caltech-101
and Scene 15) are chosen, respectively. For natural images dataset,
α is set to 0.2 and the number of bases is 512; for Caltech-101 and
Scene 15 datasets, α is set to 0.1 and the number of bases is also
512. The stopping condition is that the relative change of the objec-
tive function value between successive iterations is less than 1e− 6
(i.e. (fold − fnew)/fold < 1e − 6). The running time of our
BCDDL algorithm is 71.29s, 30.82s, and 25.53s in natural images,
Caltech-101, and Scene 15 datasets, respectively, while FS–LD al-
gorithm 1452.50s, 231.48s, and 398.22s. Hence, the total time for
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(a) natural images (b) Caltech-101 (c) Scene 15

Fig. 3. Comparison of the relationship between reconstruction error and sparsity.

(a) FS–LD (b) BCDDL

Fig. 4. Comparison of learned dictionary with extremely sparse
codes.

dictionary learning also demonstrates that the speed of our BCDDL
algorithm outperforms FS–LD algorithm significantly.

4.4. The relationship between reconstruction error and sparsity

The effectiveness of our algorithm can be evaluated by the relation-
ship between reconstruction error and sparsity to some extent. Here
the sparsity is defined as the average of number of nonzero entities
in each column of sparse codes matrix. Apart from the remarkable
speedup presented above, Figure 3 shows such variation tendency.
The conditions are similar to the previous experiment conditions,
except that for natural images dataset, α is set to 0.6 : 0.1 : 1.5
and the number of bases is 256, while for Caltech-101 and Scene 15
datasets, α is set to 0.09 : 0.02 : 0.3 and the number of bases is 256.

From Figure 3, both algorithms achieve the approximately e-
qual reconstruction error when the corresponding codes are not too
sparse. However, our algorithm attains less reconstruction error as
for lower sparsity values which corresponds to higher sparseness.
This indicates that our algorithm is capable of finding comparative-
ly much sparser codes while maintaining lower reconstruction error,
which is helpful for some real-world applications demonstrated in
the following sections.

4.5. Learning bases with extremely sparse codes cases

Figure 4 gives a comparison of learned natural images bases between
these two algorithms when the codes are extremely sparse. Figure
4(a) is the result of FS–LD algorithm, and Figure 4(b) is the result
of BCDDL algorithm. 120, 000 input vectors (each 14× 14 pixels)
are utilized to infer a set of 256 bases in both cases. α is set to 2.0
and 100 iterations are operated for dictionary learning. Notice that
there are several basis images with all zero pixel values in Figure
4(a) (The regions marked with the red boxes), which implies that the
corresponding basis vectors make no sense. Reversely, our BCDDL

Fig. 5. Comparison of dictionary learning behavior among BCDDL
and classical approaches.

algorithm is still adaptive for such situation. So even in the case of
extremely sparse codes, our algorithm remains effective.

4.6. Comparison on a synthetic experiment

To demonstrate the BCDDL algorithm, a synthetic experiment is
carried out. A random dictionary (iid Gaussian entries, normalized
columns) of size 20×50 is generated. From the generated dictionary,
1, 500 samples are produced by a random combination of 3 atoms,
with coefficients drawn from the normal distribution N (0, 1). For
each samples, it is contaminated by a random zero-mean Gaussian
noise with signal-to-noise ratio of 20dB. 100 iterations is carried out
to recover the original dictionary by four common dictionary learn-
ing methods. Figure 5 shows the ratio of recovered atoms. From
Figure 5, we can see that, our BCDDL algorithm is capable of recov-
ering 100% of atoms in 0.58 second. FS–LD algorithm recovered
96% of atoms in 70.07 second. KSVD algorithm recovered 90% of
atoms in 65.64 second. MOD algorithm recovered 82% of atoms in
47.70 second.

5. CONCLUSION

In this paper, we reformulate the optimization problems in a new
fashion for sparse coding and dictionary learning. It is probably the
fastest procedure for SC-DL to-date. Two highlights distinguish it
from previous works.

1 The simplest coordinate descent does work in SC-DL and de-
serves more attention. Our exhaustive experiments have demonstrat-
ed that BCDDL is surprisingly competitive in seeking better solu-
tions much faster.

2. The efficiency of BCDDL not only lies on coordinate descent,
but also owes to its proper partition of variables, making parallel
computation feasible. This means BCDDL is blockwise rather than
coordinate-wise.
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