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ABSTRACT

The sparsity of natural signals in transform domains such as the DCT
has been heavily exploited in various applications. Recently, we in-
troduced the idea of learning sparsifying transforms from data, and
demonstrated the usefulness of learnt transforms in image represen-
tation, and denoising. However, the learning formulations therein
were non-convex, and the algorithms lacked strong convergence
properties. In this work, we propose a novel convex formulation
for square sparsifying transform learning. We also enforce a doubly
sparse structure on the transform, which makes its learning, stor-
age, and implementation efficient. Our algorithm is guaranteed to
converge to a global optimum, and moreover converges quickly.
We also introduce a non-convex variant of the convex formulation,
for which the algorithm is locally convergent. We show the su-
perior promise of our learnt transforms as compared to analytical
sparsifying transforms such as the DCT for image representation.

Index Terms— Sparse representations, Convex learning

1. INTRODUCTION

Sparse representation of signals has become very popular in recent
years. Various sparse models have been studied such as the synthesis
model [1], analysis model [1, 2], and transform model [3].

In this work, we focus on the transform model which suggests
that a signal y € R™ is approximately sparsifiable using a transform
W € R™*" ie., Wy = x + n, where z is sparse in some sense,
and 7 is a small residual in the transform domain. Natural signals are
known to be approximately sparse in analytical transform domains
such as Wavelets [4]. The transform model is more general than the
analysis model [3]. Moreover, it allows for much faster computa-
tions than the synthesis and analysis models. When a sparsifying
transform W is known for a signal y, the process of obtaining a
sparse code x of sparsity s is called transform sparse coding [3], and
involves minimizing ||Wy — z||3 subject to ||z[|, < s. This is an
easy problem whose solution is obtained exactly by zeroing out all
but the s coefficients of largest magnitude in Wy. In contrast, sparse
coding with either the synthesis [5, 6, 7], or analysis [8, 2, 9, 10]
dictionaries involves solving an NP-hard problem [11, 12] approxi-
mately. Given W and sparse code z, one can recover a least squares
estimate of y by minimizing ||Wy — z||3 over all y € R"™. The
recovered signal is W', where W7 is the pseudo-inverse of V.

Adapting a dictionary or transform to data can be advantageous
in various applications [13, 14]. While the idea of learning a syn-
thesis [15, 16, 17] or analysis [18, 19, 8, 20] dictionary has received
recent attention, these formulations are typically non-convex and
NP-hard, and the approximate algorithms are still computation-
ally expensive. In this paper, we focus instead on the learning
of square sparsifying transforms W € R"*™. Given a matrix
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Y € R™¥ whose columns represent training signals, we recently
proposed learning a square ‘unstructured’ transform W by minimiz-
ing the sparsification error |WY — X||7,, where X is the sparse
code [3, 21]. We also introduced regularizers to enourage well-
conditioning of W [3]. Unlike synthesis or analysis dictionary
learning, the transform learning formulation [3] does not include a
highly non-convex function involving the product of two unknown
matrices. However, the formulation in [3] is still non convex, and
the convergence of the algorithm therein is not proven. A chief
advantage of transform learning is that it has a low computational
cost, and is typically much faster than dictionary learning [3].

More recently, we explored the learning of doubly sparse trans-
forms [22, 21] W = B®, where ® € R™*" is an analytical trans-
form with an efficient implementation, and B € R™*" is a sparse
matrix. The structure W = B® is motivated by the fact that & ma-
trices such as the DCT when applied to natural signals produce a
result that is already approximately sparse. Thus, by further modify-
ing the result using only a sparse B, one can produce a highly sparse
result. Doubly sparse transforms can be learnt, stored, and imple-
mented efficiently [21]. In fact, imposing the doubly sparse property
leads to faster convergence of learning compared to the unstructured
case [21]. We refer the reader to [21] for many other useful proper-
ties of doubly sparse learning. However, doubly sparse learning [21]
similar to unstructured learning lacks strong convergence properties.
Nevertheless, adaptive transforms (both doubly sparse and unstruc-
tured) have been shown to be useful in various applications [21, 23].

In this work, we propose a novel convex formulation for square
doubly sparse transform learning. We also propose a non-convex for-
mulation based on the convex one. Unlike prior work, we do provide
strong convergence guarantees for our algorithms. We demonstrate
the usefulness of our learning schemes for image representation.

2. TRANSFORM LEARNING

2.1. Problem Formulations

Given the training matrix Y € R™*¥  we recently proposed to learn

a square doubly sparse transform W = B® for the case of orthonor-
mal ® as follows [21].

(PO) min [|BZ — X% — Aog |det B| + X | BI|%
st Bl <r X0y <5 V5

Here, Z = ®Y, and the columns of X € R™*¥ denote the sparse
codes of the signals (columns) in Y. The subscript j indexes the
4 column, and the sparsity level allowed for each training sig-
nal is s. The term ||BZ — X||2, in (P0) is the sparsification error
[3]. The log |det B| penalty helps enforce full rank on the matrix
B and eliminates degenerate solutions (e.g., with zero, or repeated
rows). The || B||3, penalty in (PO) helps remove a ‘scale ambigu-
ity’ [3] in the solution, and together with the — log |det B| penalty
helps control the condition number of the learnt transform (cf. [3]).
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Well-conditioned (but not necessarily unit-conditioned) transforms
have been observed to perform well in applications [3, 21]. (Note
that the condition number of B equals that of B® in the case of
orthonormal ®.) As A — oo in (P0), the condition number of the
optimal/minimizing transform(s) tends to 1 [21]. The sparsity term
Bl is defined as 3, ; 1{3”;&0}’ with B;; the entry of B from

row ¢ and column j, and 1 {Bi;#0} the indicator function of B;; # 0.
]

The maximum allowed sparsity level for B is r.

Experimental results for (PO) [21] indicate that the learnt B for
natural images has an interesting structure of a positive diagonal
and an approximately skew-symmetric off-diagonal. This structure
is observed with various analytical ® such as the DCT, Hadamard,
Karhunen-Loéve Transform (KLT), etc. This observed structure is a
motivation for our work here on convex learning.

We propose to model a sparse transform B € R™*™ as I, + A,
where I,, (or, simply [) is the n X m identity, and A is a skew-
symmetric matrix satisfying AT = —A (skew-symmetry implies
that A has a zero diagonal), with ()7 denoting the matrix transpose
operation. This B corresponds to a transform W = B® = &+ AQ,
which is the sum of the analytical ® matrix and a deviation term A®.

For the proposed B, we have B’B = (I — A)I + A) =
I — A% If A is small (has small norm), then B is approximately
orthonormal, since the second order deviation term A? above can
be considered negligible. Thus, the condition number of B can be
controlled simply by controlling the magnitude of A. Our convex
formulation for doubly sparse transform learning is as follows.

. 2 n 7|2
min [|(1 + A)Z - X[} + ] |4+ 7| +wllal, +elxi,

s.t. A“ = OV 7 (Pl)

Here, 7, u, and £ are non-negative weights. The (trivial) condition
A = 0 Vi, although written as a constraint for simplicity, is in
fact hard coded into the objective function, i.e., the optimization is
only performed over the off-diagonal elements of A. Note that here
B = I, + A, where A has zeros on the diagonal, and is assumed
to be approximately skew-symmetric. Approximate rather than ex-
act skew-symmetry was observed in [21], and leads to slightly bet-
ter performance in our experiments. Since A can be written as the
sum of its orthogonal symmetric and skew-symmetric parts, i.e.,
A= # + A*QAT , the penalty & HA + ATHj; in (P1) helps en-
sure that the energy in the symmetric part is sufficiently small. The
penalty || Al|, = 3=, ; [Ai;] is to enforce sparsity of the off-diagonal
of A. Tt also serves to keep A (magnitude) small, so that B is approx-
imately orthonormal (i.e., is well-conditioned). Similarly, || X||, =
> I X:]|, ensures sparsity of the columns of X. One could alterna-
tively replace the penalty & || X ||, with 3. & || X;|,, when appropri-
ate weights &; are known. The penalty ||( + A)Z — X||2, in (P1)
measures the sparsification error.

(P1) is a linear least squares problem in X and the off-diagonal
of A, with additional ¢; norm regularizers, and is therefore, con-
vex. We believe this is the first convex sparsifying transform learn-
ing formulation. However, the quadratic part of the cost in (P1) is
not strictly convex, since it has a linear variety of minimizers (/1, X )
satisfying X = (I +A)Z,and A = — AT Thus, the ¢, regularizers
in (P1) can help ensure that the optimal minimizer(s) is sparse.

We also propose the following non-convex variant of Problem
(P1), where the ¢; penalty on X is replaced by an ¢y constraint.

2
(P2) min (0 +4)Z = X[+ T[4+ A7 +ullAl,

s.t. A“ =0V i, HX]HU S S Vj

Problem (P2) has fewer aspects of non-convexity than (P0), since it
lacks the log-determinant penalty and the ¢o constraint on B.

Both Problems (P1) and (P2) have an analytical solution for X
for fixed A [3]. In the case of (P1), the solution is given as X =
Sej2(Z + AZ), where S /5(-) is the soft-thresholding operator. For
a matrix C, Sg/2(C) = sign(C) © (|C| — £/2) ., where “©” rep-
resents element-wise multiplication between matrices, sign(-) pro-
vides the signs of the elements of a matrix, and (-)+ zeros out all
but the non-negative elements of a matrix. In the case of (P2), the
solution for X with fixed A is obtained by zeroing out all but the s
coefficients of largest magnitude in each column of Z + AZ (when
this solution is unique, it is equivalent to hard-thresholding Z + AZ
with a possibly different threshold for each column). The solutions
for X with a fixed A in (P1) and (P2) are thus non-identical (ex-
cept in extreme cases when they are both either 0 (for sufficiently
large € and s = 0), or Z + AZ (when £ = 0,s = n)), since soft-
thresholding always causes shrinkage of large coefficients, while
hard-thresholding does not have such an effect. However, despite
their non-equivalence, both (P1) and (P2) perform well and quite
similarly in practice.

2.2. Algorithms and Properties

DOSLIST Algorithm. Our algorithm for Problem (P1) is a scale-
invariant version of standard FISTA [24] that uses multiple Lip-
schitz constants. We define f(A,X) = |[(I+A)Z — X||% +
7 HA + ATHf?, where A is assumed to be zero on the main diago-
nal. Then, for any set of matrices A, A’, X, X’ (of appropriate sizes,
and with A, A’ having zero diagonals), the function f satisfies the
following inequality for appropriate constants L 4 and L x.

JALX) < (Taf(A X0, 4 A)+ Z Al o
£ HAX) + (T (A X), X = X)+ 25 X - x

Here, Vx f and V 4 f, respectively, denote the gradients (arranged
in matrix form) of f with respect to X and to the off-diagonal ele-
ments of A, with the diagonal of V 4 f fixed to zero. Specifically,
Vaf(A,X)=Go 2 +A)Z2Z" —2XZ"+ nA + nAT) with
G a matrix of all ones and a zero main diagonal, and Vx f(A, X)
= 2(X —Z — AZ). For matrices @ and R, the inner product (-, -} in
(1) is defined by (Q, R) = trace(RTQ). Equation (1) is obviously
satisfied when L4 = Lx = L, where L is a ‘global’ Lipschitz con-
stant [24] of V f. However, L 4 and L x need not coincide in general
(e.g., (1) may hold with Lx < La = L).

Our algorithm for solving (P1) called DOSLIST is presented in
Fig. 1. It is similar to FISTA, but uses the block constants L 4 and
Lx. While we use constant stepsizes here, one can also obtain a
version of DOSLIST with backtracking (similar to FISTA [24]).

DOSLAM Algorithm. For the non-convex Problem (P2), we
propose an alternating algorithm similar to the one previously pro-
posed for Problem (P0) [21]. We call our proposed algorithm DOu-
bly Sparse Learning by Alternating Minimization (DOSLAM). In
one step of the algorithm called the Sparse coding step, we solve
(P2) with fixed A.

min [[(I+A)Z - X[} st X[, <s Vi @

The solution X is obtained exactly as X = H,(Z + AZ), where the
operator H,(-) zeros out all but the s coefficients of largest magni-
tude in each column of a given matrix. In the other step of DOSLAM
called the Transform update step, we solve (P2) with fixed X.
min |7+ )7 - X3+ |avaT| 44l 6
A;A;;=0Vi 4 = 1
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Input : Z = ®Y - Data, L4, Lx - Constants satisfying equation
(1), J - number of iterations.

Initialization : Q' = A%, R' = S;»(Z+A°Z) = X", t; = 1.
For k =1:J Repeat

A =S, (QF = A VAS@Q" RY)

XF = Sy (R* = 2 VxF(Q" RY))

boss = 144/14+4t2
=
k+1 _ gk tp—1 k k-1
QL= Ak 4 (=) (aF - At
RFFL — xF 4 (ttk—l) (Xk _Xk—l)
k+1
End

Fig. 1. DOubly Sparse Learning by Iterative Soft Thresholding
(DOSLIST) Algorithm for Problem (P1). The initial A° has a zero
diagonal, and the update of A* above keeps the diagonal as 0.

Here, as before, the condition A;; = 0 V4, is directly incorporated
into the objective, making the above problem unconstrained. The
objective function here is convex, and is similar to the objective of
(P1). Thus, it can be minimized using iterative algorithms like ISTA
[25, 24], or MFISTA [26] (which is the monotone version of FISTA).
Both ISTA and MFISTA work well for this step. However, we em-
ploy ISTA here to obtain strong convergence results for DOSLAM.
Note that ISTA is guaranteed to converge to a global minimizer of
the objective in (3) at O(1/k) rate [24]. ISTA requires a Lipschitz
constant L as input. Since X is fixed in (3), we are only interested
in the Lipschitz constant of V 4 f(A, X) (fixed X).

Convergence of DOSLIST. We denote the full objective func-
tion of (P1) as F'(A, X), where A has a zero diagonal. The following
theorem provides the O(1/k?) convergence rate of DOSLIST.

Theorem 1. Let {A*}, {X*}, {QF}, {R*} denote the iterate
sequences generated by the DOSLIST algorithm for data Z. Further,
let (A*, X™) denote any minimizer of Problem (PI). Then, for any
k > 1, we have

k vk oy 2C

where the constant C' = L 4 ||AO — A*HQF + Lx HXO - X*HQF

The proof of the above theorem follows that of FISTA [24]
closely, except that expressions in [24] involving a single Lipschitz
constant are broken into their block-Lipschitz components. The full
details of the proof will be presented elsewhere [27].

We now demonstrate the interesting scale-invariance behavior
of the DOSLIST algorithm. We first show how Problem (P1), and
the constants L4 and Lx in (1) change when the data Z is scaled.
For our analysis, we introduce Z into our previous notation and write
J(A,X,Z) = (I +A)Z — X|[%+2 ||A+ AT||. Similarly, the
overall objective is F'(A, X, Z).

Let us call the objective of (P1) with data Z and weights n, u, £,
ie., F(A, X, Z), the ‘un-scaled’ objective. When Z is scaled by a
non-zero scalar & € R in (P1), we also need to scale the weights
n and p by o, and £ by |a|. Then, by making the substitution
X = aX/’, the new objective F with aZ and scaled weights satisfies
F(A,X,aZ) =o?F(A, X', Z). Therefore, both F and F have the
same set of minimizers with respect to A. Moreover, the minimizers
with respect to X for F are o times the corresponding minimizers
for F' (this makes perfect sense since the data Z was trivially scaled).

The following lemma (which we provide without proof) shows
the behavior of the constants L 4 and L x with scaling.

Lemma 1. Let L 4o and Lx be constants satisfying (1) for the func-
tion f(A, X, Z) with data Z and weight n. For any non-zero scalar
a € R, if we replace Z with o Z, and 1) with an, then the modified
Sfunction fsatisﬁes (1) with modified constants

La=a’La, Lx = Lx. )

We can also write the constants as Ly = Cio%, Lx = Co,
where o is the largest singular value of Z, and C, C5 are the con-
stants satisfying (1) when Z is scaled to have unit spectral norm.
This form of L 4 and L x models their behavior with respect to scal-
ing of Z, as dictated by Lemma 1.

We now use Lemma 1 to show that the DOSLIST algorithm is
scale-invariant. Let {A*} and {X"} be the DOSLIST iterate se-
quences obtained with the (un-scaled) input Z, weights 7, u, &, and
constants L4, Lx satisfying (1). Futher, let {Af} and {XT} de-
note the modified sequences generated by the DOSLIST algorithm
with input a7, and appropriately scaled weights in (P1), and ap-
propriately scaled constants. Then, by looking at the effect of the
scaling on each step in Figure 1, it is easy to observe that AY = A*
and X¥ = aX*. Thus, the DOSLIST algorithm always generates
the same sequence {Ak} irrespective of the scaling on Z. It can
also be shown that scaling Z by « in (P1) (along with scaling of the
weights) simply causes equation (4) of Theorem 1 to scale by o
throughout. If we divide (4) by the non-negative F'(A*, X ™) (as-
suming it is non-zero), then the resulting equation is scale-invariant.

We now show that the standard FISTA [24] is scale-dependant.
Standard FISTA is equivalent to using a single L = max(L4, Lx)
(this is the smallest L for which equation (1) becomes equal to the
corresponding condition for f in FISTA [24]) in DOSLIST. For ex-
ample, when o1 (Z) (the scaling) is sufficiently large, then L =
max(Cio1,C2) = Ciof, and it is easy to see that the steps of
standard FISTA (Fig. 1 with Lx = L4 = L) are not scale-invariant
in this setting (i.e., if a particular large choice of o gets scaled (e.g.,
by 2), it results in a totally new/unrelated iterate sequence). More-
over, it can be shown for this case that the bound in Theorem 1 (with
single L) is also not homogeneous to scaling, and the constant C'
scales badly as O(o?1). In practice, we observed that standard FISTA
(with either constant step size or backtracking) has a poor (slow)
convergence behavior for (P1), unless the scaling of Z is manually
tuned for better convergence. Thus, the DOSLIST algorithm with
the scale-invariant behavior eliminates a need for scale tuning.

Convergence of DOSLAM. Problem (P2) has the constraint
X5l < sVj, which can instead (equivalently) be added as a
penalty in the objective by using a barrier function v(X) (taking
the value 400 when the constraint is violated, and zero otherwise).
In this form, Problem (P2) is unconstrained (note no optimization
over diagonal of A), and we denote its objective as g(A, X). For a
vector u, let 3;(u) denote the magnitude of the 5™ largest element
(magnitude-wise) of u. We then have the following Theorem on the
convergence of our algorithm for (P2).

Theorem 2. Let {Ak, X k} denote the iterate sequence generated
by the DOSLAM algorithm for (P2) with data Z and initialization
(A°, X°). Then, the objective sequence {g(A*, X*)} is monotone
decreasing, and converges to a finite value, say g*. Moreover, the
iterate sequence is bounded, and every accumulation point (A, X)
of the iterate sequence is a fixed point of the algorithm satisfying the
following local optimality condition.

g(A+dA, X +dX) > g(A,X)=yg" (6)

The condition holds for all dA € R™*™ with a zero diagonal, and all
dX € RN inthe half-space (I + A)Z — X,dX) < 0. Further-
more, the condition also holds for dX in the local region defined by

5301



|

Fig. 2. The test images - Barbara, brain [14], Cameraman, and Lena,
which we label with numbers 1 through 4, respectively.

|dX||, £ max;; |dX;| < min; {Bs(U;) : ||Ujll, > s}, where
U=U+A)Z If||Uj|l, < sV, then dX can be arbitrary.

Theorem 2 indicates local convergence of our alternating algo-
rithm. Every accumulation point (A, X') of the DOSLAM iterate
sequence is a local optimum by (6), and satisfies g(A, X) = ¢~.
Thus, all the accumulation points are equivalent (in terms of their
cost), or equally good local minima. We can therefore say that the
objective converges to a local minimum for DOSLAM. Equation (6)
holds not only for local (small) perturbations in X, but also for ar-
bitrarily large perturbations of X in a half space. Furthermore, (6)
holds for the algorithm irrespective of initialization. However, the
local minimum g* to which the cost converges may possibly depend
on initialization. The condition (6) also holds irrespective of the
number of iterations of ISTA in the transform update step. All these
properties and the large set of permissible perturbations (dA, dX)
in Theorem 2 indicate a strong (‘almost global’) convergence for our
DOSLAM algorithm. For reasons of space, the proof of Theorem 2
is presented elsewhere [27].

The proposed algorithms for both (P1) and (P2) have a low com-
putational cost, which scales in order as O(n? N) per-iteration. The
algorithms involve operations with sparse matrices, which can be
implemented very efficiently (similar to [21]).

3. NUMERICAL EXPERIMENTS

We study the usefulness of the proposed transform learning schemes
for representing the four 512 x 512 labeled images in Fig. 2. We
learn W = B® from the 12 X 12 (zero mean) non-overlapping
patches of the images, with ® being the patch-based 2D DCT [3].
We compare the transforms learnt via (P1) and (P2), with those learnt
via (P0), and the fixed patch-based 2D DCT itself. The parameters
for (P1) and (P2) are n = 144, n = (3.26 x 107*)01(Z), p =
(2.18 x 107%)0%, s = 24, A® = 0. We use a different & = 0.44 x
Bs+1(Z;) (scales linearly with Z = ®Y assuming Ss+1(Z;) # 0
V1) for each patch (column of X) in (P1). For DOSLIST, La =
2.5607 and Lx = 3.7, which we found empirically. For DOSLAM,
we use [ = 1.4202 (in ISTA), and run 100 iterations of ISTA in the
transform update step. For (P0), A = 8.7 x 107302, r = 0.25 x n?,
with n, s the same as before. We stop the iterations of the algorithms
when the relative iterate change [21] falls below 0.01%. We also set
a maximum iteration count of 300.

Fig. 3 shows the evolution of the objective over iterations for
our algorithms for (P1) and (P2), for the cameraman image. The
objectives converge quickly for our algorithms. The magnitudes of
the A matrices learnt via (P1) and (P2) are also shown in Fig. 3.
They appear sparse, and are similar.

For (P1) and (P2), we generate exactly sparse transforms at a
sparsity level of 0.25 x n? by thresholding the learnt B = I,, + A.
Note that the transforms learnt via (P1) and (P2) are already exactly
sparse. However, they typically also contain many elements close
to zero, which can be thresholded, without affecting the transform
quality, but improving its sparsity.

We measure the quality of the transforms W = B® using the
normalized sparsification error (NSE), and recovery peak signal
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Fig. 3. The evolution of the objectives of (P1) (top left) and (P2)
(bottom left) for Cameraman, and the magnitude of the correspond-
ing learnt A for (P1) (top right) and (P2) (bottom right).

10°

i

Objective of (P2)

50 100 150
lteration Number

Im- NSE rPSNR

age | Pl P2 | PO | DCT P1 P2 PO DCT
1 36 | 3.0 | 2.8 4.4 3499 | 3532 | 3559 | 33.76
2 05|04 | 04 0.6 45.32 | 45.72 | 45.77 | 44.12
3 06 | 05 | 04 1.1 43.34 | 44.19 | 4439 | 40.27
4 30 | 26 | 24 3.1 37.74 | 37.97 | 38.13 | 37.13

Table 1. NSE (in percentage), and rPSNR (dB) for various images
obtained using our algorithms for (P1) and (P2), along with the cor-
responding values for (PO) [21], and the fixed DCT.

to noise ratio (rPSNR) metrics. The NSE metric [3] is defined as
WY — X||3./ WY |3, where X = H,(WY), and it measures
the fraction of energy lost in sparse fitting in the transform domain.
The rPSNR metric is defined as 255v/P/ ||Y — W' X’|| . in dB,
where P is the number of image pixels. It measures the error in re-
covering the patches Y (or, the image for non-overlapping patches)
as WX’ from the sparse codes X’. While we can use X’ ob-
tained as just Hs(WY") [3], we found that the rPSNR improves by
setting only the support of X" to the support of Hs(WY), and then
performing a simple least squares update of the nonzero elements of
X' to minimize ||Y' — W' X’|| .. tPSNR is a simple surrogate for
the compression performance of transforms.

Table 1 provides the NSE and rPSNR values for the transforms
learnt via various algorithms, along with the corresponding values
for the 2D DCT &. The learnt transforms using the proposed algo-
rithms (which are all well-conditioned) for (P1) and (P2) are seen
to provide much better recovery and sparsification compared to the
analytical DCT. Moreover, they tend to perform comparably to the
transforms learnt via (PO). The performance for (P2) is slightly bet-
ter than for the fully convex (P1), due to the non-equivalence of the
problem formulations, discussed in Section 2.1.

4. CONCLUSIONS

In this paper, we presented the first convex sparsifying transform
learning formulation, and an algorithm guaranteeing O(1/k?) con-
vergence to a global optimum. We also presented a non convex for-
mulation for which our algorithm has local convergence. Our learnt
transforms provide much better sparsification errors and recovery
PSNRs than analytical transforms. They also perform comparably
to those learnt using previous non convex (non-guaranteed) schemes
in our experiments. The usefulness of the proposed schemes in de-
noising [21] and other applications [23] merits further study.
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