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ABSTRACT

In this paper, we propose a new polynomial based texture
representation method for extracting information about facial
expressions. While many appearance-based methods have
been proposed over the years to improve the performance of
facial expression recognition, most descriptors are usually
unable to both provide precise multi-scale / multi-orientation
analysis and handle the redundancy problem effectively.

We will explain how coefficients obtained from polyno-
mial projections of pixel intensities on a complete basis can
be used for compact, hierarchical image approximation and
structural analysis. We have tested our approach on two pu-
blicly available databases and achieved encouraging results
comparable to the state of the art.

Index Terms— Complete Polynomial Basis, Facial ex-
pressions, Appearance-based classification

1. INTRODUCTION

The automatic recognition of facial expressions is one of
the most challenging and popular topics in the computer vi-
sion domain as it impacts important applications such as vir-
tual reality, broadcasting, user profiling or video conferen-
cing.

An essential step for a successful facial expression re-
cognition is the extraction of facial features that attempt to
find the most effective representation of face images. There
are two common feature extraction approaches : geometric
feature-based systems, using major face components and/or
feature points, and appearance based systems using image fil-
ters. A thorough survey of the existing work can be found in
[1, 2, 3]. Experimental results show that methods using Ga-
bor wavelet transforms, derived from biological principles on
the visual system, provide superior performance and are an
effective method for facial expression recognition [4, 5]. Ho-
wever, it is both time and memory intensive to convolve face
images with a bank of Gabor filters to extract multi-scale and
multi-orientation coefficients.

Polynomial representations are similar to complete wa-
velet packet decompositions for a defined scale. Such des-
criptions have been used for the characterization and re-
presentation of handwritten mathematical symbols [6], the
analysis of vowels and consonants in spectral frequency for
speech recognition [7], or the generation of linear phase
two-dimensional FIR digital filter functions [8]. Their use in
image representation has also been demonstrated in [9, 10].

In [11], Carré and Augereau proposed a multi-scale hy-
percomplex 2D polynomial transform for color images based
on quaternionic polynomials.

In this paper, we investigate the use of coefficients resul-
ting from polynomial projections for texture representation
within a system of facial expression recognition. Details about
polynomial texture representation are provided in section 2,
while polynomial decomposition is presented in section 3.
We show in section 4 our proposed method and we compare
in term of computational efficiency polynomial transforms to
Gabor transforms. Experimental results obtained by applying
the proposed technique on MUG [12] and the extended Cohn-
Kanade [13] databases are provided in section 5 and show
significant recognition rates over state-of-the-art methods. Fi-
nally, we will conclude and open the discussion on further
works in section 6.

2. COMPLETE BASES
Our motivation to use a polynomial representation is that

the orthogonal polynomials have, similarly to Gabor filters,
some properties related to the human visual system [14], in-
cluding multi-scale / multi-resolution information representa-
tion.

Let a Real Bivariate Polynomial of degree d be the func-
tion of x = (x1,x2) ∈ IR2 defined as :

P (x) =
∑

(d1,d2)∈[0;d]2
d1+d2≤d

ad1,d2
xd1
1 xd2

2 (1)

where d1 ∈ IN+ and d2 ∈ IN+ are the degrees of variables
x1, x2 and the {ad1,d2

} ∈ IR are the coefficients of the po-
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lynomials. The overall degree of the polynomials is then the
maximum of d1 + d2.

Considering a finite set of pairs D = {(d1, d2)} ⊂ IN2 ,
we represent by lED the space of all real bivariate polynomials
such as ad1,d2 ≡ 0 if ((d1, d2) /∈ D)and by KD the subset of
real monomials :

KD =
{
Kd1,d2(x) = xd1

1 xd2
2

}
(d1,d2)∈D

(2)

Obviously KD satisfies the linear independence and spanning
conditions and so, KD is a basis of lED, the canonical ba-
sis. In image analysis, we look for bases with suitable pro-
perties such as orthogonality or normality. So, to construct a
discrete orthonormal real bivariate polynomial finite basis we
first have to consider the underlying discrete domain :

Ω =
{
x(u,v) =

(
x1,(u,v), x2,(u,v)

)}
(u,v)∈D1

(3)

where D1 represents the set of pairs associated to Ω.
Starting from KD we intend to construct a new orthonor-

mal basis by applying the Gram-Schmidt process. That im-
plies that we need some product and norm for real bivariate
functions defined on Ω. Taking into account the computatio-
nal contingencies, given two real bivariate functions, F and
G, their discrete extended inner product is defined by :

〈F |G 〉w =
∑

(u,v)∈D1

F
(
x(u,v)

)
G
(
x(u,v)

)
w
(
x(u,v)

)
(4)

with w a real positive function over Ω (Legendre, Chebichev,
Hermite, ...). Then, the actual construction process of an or-
thonormal basis :

BD1,w = {Bd1,d2}(d1,d2)∈D1
(5)

is a reccurence upon(d1, d2) :

Td1,d2 = Kd1,d2 −
∑

(l1,l2)≺(d1,d2)

〈Kd1,d2 |Bl1,l2 〉w Bl1,l2

(6)

Bd1,d2
(x) =

Td1,d2

|Td1,d2
|w

(7)

where≺ is the lexicographical order and ||w the norm induced
by 〈|〉w . The resulting set of B polynomials verifies :

〈Bd1,d2
|Bl1,l2 〉w =

{
0 if (d1, d2) 6= (l1, l2)
1 if (d1, d2) = (l1, l2)

(8)

BD1 , w is effectively an orthonormal basis with respect to a
weighting function w. A special case is the complete basis
where D1 represents exactly the set of pairs associated to Ω,
that is

D1 = [0;N1]× [0;N2] (9)

A complete basis, related to the discrete extended inner
product (4) is the orthonormal basis whose domain is Ω defi-
ned by the family :

{Bd1,d2
(x)}d1=0..n1

d2=0..n2

(10)

The number of polynomials in the complete polynomial
basis is given by the size (n1 + 1)× (n2 + 1).

3. POLYNOMIAL DECOMPOSITION
To acquire an efficient strategy in image analysis, we need

a joint spatial/frequency representation. In this section, we
show that real discrete orthonormal polynomials can be consi-
dered as a discrete multiscale decomposition.

Considering a function U defined on a domain Ω of n1 ×
n2 sizes and a basis of h1 × h2 sizes, the decomposition pro-
cess is expressed, at a step L, according to :

1. partition of the discrete domain ΩL with a number of
∆ sublattices , of sizes hL

1 × hL
2 ;

2. for each subinterval ∆, approximation of the corres-
ponding restriction UL in a complete basis constructed
on ∆. The polynomials coefficients are defined as :

bi,j(U
L) =

〈
UL |Bi,j

〉
w

(11)

3. the reordering or orthogonal polynomial coefficients b
into hL

1 × hL
2 functions UL+1

i,j , on domains of[
nL+1
1 ≡ nL

1

hL
1

]
×
[
nL+1
2 ≡ nL

2

hL
2

]
(12)

sizes to provide image subbands in a multiresolution
decomposition-like structure.

This technique provides a degree of flexibility which relates to
the choice of resolution factors being potentially independent
between different levels of decomposition. With respect to
classic time-frequency representations, such as wavelets, po-
lynomial basis decompositions do not necessarily use a dya-
dic partition and are therefore more adaptable.

Two examples of a first level decomposition on the same
image are shown in Figure 1 with a decomposition using a
3 × 3 Chebychev complete basis (left) and a 5 × 4 Hermite
complete basis(right).

4. BASE PROJECTIONS FOR FACIAL EXPRESSION
RECOGNITION

The orthonormal polynomial decomposition allows to ex-
tract the different frequency components of a signal and offers
the possibility to use multiresolution piecewise polynomial
decomposition, so it can be used for the feature extraction wi-
thin a system of facial expression recognition.

We use as input to our approach still face images labe-
led with landmarks around fiducial points. According to the
difference of recording environment, the recorded data may
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Fig. 1. Two examples of a first level decomposition with Che-
bychev 3x3 and Hermite 5x4 complete basis

contain different facial locations and scales. To eliminate such
variation, we normalize each face. This is done by a global
Procrustes analysis (GPA), followed by a histogram equaliza-
tion.

Fig. 2. Example of input images with fiducial points

To extract the facial feature we propose to calculate the
coefficients of polynomial projections on a complete basis
on each fiducial point. Two different modes of computation
are available : coefficients can either be calculated on texture
patches, or retrieved from a multi-resolution polynomial de-
composition.

For the first mode - SR Poly, feature vector for each fa-
cial point is extracted from a 19x19 pixels image patch cen-
tered on that point. This size was chosen to be similar to the
size calculated empirically for the approach using LBP his-
tograms. Hence, the polynomial coefficients are obtained via
projections on a 19x19 complete Hermite basis with a Cheby-
chev function for the collocation points. Since the coefficients
provide a hierarchical representation of image structures, we
can reduce their number to speed-up the computations with
little efficiency loss.

For the second mode- MR Poly, we use a 3 level multi-
resolution approach proposed in section 3. To have a similar
representation to Gabor wavelets as [4] we use a complete
3x3 Hermite basis with a Chebychev function for collocation
points. In this way, we will have a representation with 3 scales
and 9 orientations. The regions around every fiducial point
vary from 81x81 pixels to 3x3 pixels. Figure 3 shows the first
level frequency decomposition of a 3x3 polynomial approach.

Comparison with Gabor transform

Polynomial representations are similar to complete wa-
velet packet decompositions for a defined scale. Using a

Fig. 3. Frequency decomposition of the polynomial trans-
form, where hi,j represent different subbands

multi-resolution polynomial approach we can obtain a multi-
scale/multi-orientation non-redundant representation.

Usually, in an automatic facial expression recognition sys-
tem using Gabor wavelets, a bank of Gabor filters,composed
of filters in distinct orientations and frequencies, is applied
to the face to extract the feature vector. The filter bank is
usually composed of four frequencies and six orientations. So
to calculate the Gabor feature vector, each image is convolved
with 24 Gabor kernels, which sizes varies with the frequen-
cies. This representation is memory and time consuming. For
example to calculate the 6 different orientations for the big-
gest Gabor kernel are required 6 × n × n multiplications, n
being the size of the kernel.

By using the polynomial projections with a 3x3 complete
basis, our image patch is partitioned in 9 subblatices at each
step, being considered as ”orientations”. Hence, the multi-
scale polynomial transform will be more compact than a Ga-
bor wavelet representation, thus allowing the disappearance
of most sampling problems, such as the trade-off between
orientation sampling and spatial sampling.

5. EXPERIMENTAL RESULTS
In our classification experiments we use a 10-fold cross-

validation Support Vectors Machine-based approach on
Cohn- Kanade and MUG databases.

The CohnKanade database [13] consists of expression se-
quences of 210 adults, starting from a neutral expression and
ending in the peak of the facial expression. Participants were
instructed by an experimenter to perform a series of 23 facial
displays, six of which were prototypical emotions including
angry, disgust, fear, joy, sad and surprise. We use a subset of
115 subjects for our experiments. Only the first (neutral) and
final image (the prototypical expression) of each of the selec-
ted sequences are considered for our training and testing. The
confusion matrix obtained from this database using multire-
solution polynomial projections is presented in Table 1. We
see that happy, disgust, neutral, and surprise are detected with
high accuracy while fear is presenting slightly inferior detec-
tion.
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truth pred(%) An Di Fe Ha Ne Sa Su
Anger 86.4 3.4 4.2 1.4 1.0 8.3 0.0

Disgust 2.3 93.2 4.2 1.4 1.0 0.0 0.0
Fear 2.3 1.7 79.2 2.9 0.0 4.2 1.2

Happiness 4.5 0.0 4.2 94.3 0.0 0.0 0.0
Neutral 0.0 1.7 0.0 0.0 92.9 4.2 1.2
Sadness 4.5 0.0 4.2 0.0 5.1 83.3 0.0
Surprise 0.0 0.0 4.2 0.0 0.0 0.0 97.6

Table 1. Confusion matrix for the CK database (MR Poly)

The MUG database [12] includes image sequences of 86
subjects performing the six basic expressions more than once.
The image sequences begin and end at neutral state and follow
the onset, apex, offset temporal pattern. For our experiments
we used 401 images of 26 subjects that are manually annota-
ted with 65 landmarks by removing the chin landmarks. The
confusion matrix obtained from this database using multire-
solution polynomial projections is presented in Table 2.In this
case neutral presents the lowest detection, followed by fear.
This is due to the low quantity of neutral images in the data-
base. All others emotions where predicted with high accuracy.

truth pred(%) An Di Fe Ha Ne Sa Su
Anger 94.6 1.4 0.0 0.0 3.6 4.0 0.0

Disgust 0.0 98.6 2.0 0.0 0.0 0.0 0.0
Fear 0.0 0.0 83.7 0.0 10.7 2.0 3.1

Happiness 0.0 0.0 2.0 100.0 10.7 0.0 1.5
Neutral 3.6 0.0 4.1 0.0 67.9 4.0 0.0
Sadness 1.8 0.0 0.0 0.0 7.1 88.0 1.5
Surprise 0.0 0.0 8.2 0.0 0.0 2.0 93.8

Table 2. Confusion matrix for the MUG database (MR Poly)

Comparative Study

A comparison of the proposed methods with Gabor wave-
lets and LBP based texture descriptions [3] is shown in Tables
3 and 4. Table 3 shows the comparison results in terms of clas-
sification accuracy, and Table 4 in terms of execution time.
All the experiments were carried on a Dell desktop with 2.53
GHz Intel Xeon CPU. The time given for feature extraction is
for one single fiducial point.

Regarding the XY positions our results differ from the one
presented in [4]. This is explained by the fact that our XY
position are normalized by GPA, hence they are likely to give
better results than Gabor wavelets.

Comparing our multiresolution polynomial approach to
the one using Gabor wavelets, our method gives better perfor-
mance results both in terms of accuracy as in terms of com-
putation time. However, because the multiresolution polyno-
mial approach implies the computation of coefficients which
are unlikely to be relevant for classification, we will prefer a
single-resolution method with coefficients pre-selections. As
it turns out, multi-resolution decompositions are better for ap-
plications such as lossy compression or denoising than they
are for classification.

Methods Classification Rates(%)
Cohn Kanade MUG

XY Positions 92.80 91.02
Gabor Wavelets 91.79 91.76

MR Poly 92.03 92.27
LBP based method [3] 96.76 94.01

SR Poly 94.54 93.25

Table 3. Comparison of proposed approaches with other me-
thods in terms of classification accuracy

Methods Execution times(ms)
Feature extraction Classification

XY Positions ≈ 0 0.539
Gabor Wavelets 19.637 6.810

MR Poly 5.575 7.303
LBP based method [3] 0.673 30.071

SR Poly 0.411 1.420

Table 4. Comparison of proposed approaches with other me-
thods in terms of execution times. It can be ovserved that even
if SR poly performs with a slightly inferior precision (≈ 2%),
it appears to be much better in terms of computation times
w.r.t. LBP based method

It can be also observed that in comparison to the LBP
based method while we obtain a slightly inferior precision
(≈ 2%), our method appears to be much better in terms of
computation times (over twenty times faster). The length of
the feature vector extracted by LBP histograms is more sub-
stantial (59 uniform patterns for each fiducial point) so in
terms of classification this method is time consuming.

6. DISCUSSION AND CONCLUSION

In this paper, we have proposed a new method of using co-
efficients obtained by polynomial projections for recognition
of expressions from still face images.

We have shown that polynomial multi-resolution decom-
position allows hierarchical organization of image informa-
tion within the frequency domain. As a result, polynomial co-
efficients can be used as an efficient alternative to global or re-
dundant texture representations such as Gabor Wavelets, wi-
thout losing accuracy. Because polynomials in the complete
basis are orthogonal, it is possible to compute the coefficients
directly by a simple inner product of polynomials with the
image. In multi-scale complete basis decompositions, while
perfect reconstruction of the original signal can be obtained
using a full set of coefficients, scalable approximation is also
possible, by restricting reconstruction to a reduced set of co-
efficients, resulting in a fully scalable process.

Experimental results confirm that our approach performs
well with face expression recognition, giving high accuracy
results and being computationally efficient. In further works,
we will study use of polynomial coefficients for the texture
analysis within AAM models.
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