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ABSTRACT
In this paper we consider the dictionary learning problem for
sparse representation. We first show that this problem is NP-
hard and then propose an efficient dictionary learning scheme
to solve several practical formulations of this problem. Unlike
many existing algorithms in the literature, such as K-SVD,
our proposed dictionary learning scheme is theoretically guar-
anteed to converge to the set of stationary points under cer-
tain mild assumptions. For the image denoising application,
the performance and the efficiency of the proposed dictionary
learning scheme are comparable to that of K-SVD algorithm
in simulation.

Index Terms— Dictionary learning, sparse representa-
tion, computational complexity, K-SVD.

1. INTRODUCTION

The idea of representing a signal with few samples/observations
dates back to the classical result of Kotelnikon, Nyquist,
Shannon, and Whittaker [1–5]. This idea has evolved over
time, and culminated to the compressive sensing concept in
recent years [6, 7]. The compressive sensing or sparse re-
covery approach relies on the observation that many practical
signals can be sparsely approximated in a suitable over-
complete basis (i.e., a dictionary). In other words, the signal
can be approximately written as a linear combination of only
a few components (or atoms) of the dictionary. This obser-
vation is a key to many lossy compression methods such as
JPEG and MP3.

Theoretically, the exact sparse recovery is possible with
high probability under certain conditions. More precisely, it
is demonstrated that if the linear measurement matrix satis-
fies some conditions such as null space property (NSP) or re-
stricted isometry property (RIP), then the exact recovery is
possible [6, 7]. These conditions are satisfied with high prob-
ability for different matrices such as Gaussian random matri-
ces, Bernoulli random matrices, and partial random Fourier
matrices.

In addition to the theoretical advances, compressive sens-
ing has shown great potential in various applications. For ex-

This research is supported in part by the National Science Foundation,
grant number DMS-1015346.

ample, in the nuclear magnetic resonance (NMR) imaging ap-
plication, compressive sensing can help reduce the radiation
time [8, 9]. Moreover, the compressive sensing technique has
been successfully applied to many other practical scenarios
including sub-Nyquist sampling [10, 11], compressive imag-
ing [12, 13], and compressive sensor networks [14, 15], to
name just a few.

In some of the aforementioned applications, the sensing
matrix and dictionary are pre-defined using application do-
main knowledge. However, in most applications, the dictio-
nary is not known a-priori and must be learned using a set
of training signals. It has been observed that learning a good
dictionary can substantially improve the compressive sensing
performance, see [16–22]. In these applications, dictionary
learning is the most crucial step affecting the performance of
the compressive sensing approach.

To determine a high quality dictionary, various learning
algorithms have been proposed; see, e.g., [16, 22–24]. These
algorithms are typically composed of two major steps: 1)
finding an approximate sparse representation of the training
signals 2) updating the dictionary using the sparse represen-
tation.

In this paper, we consider the dictionary learning problem
for sparse representation. We first establish the NP-hardness
of this problem. Then we consider different formulations of
the dictionary learning problem and propose several efficient
algorithms to solve this problem. In contrast to the existing
dictionary training algorithms [16, 22, 23], our methods nei-
ther solve Lasso-type subproblems nor find the active support
of the sparse representation vector at each step; instead, they
require only simple inexact updates in closed form. Further-
more, unlike most of the existing methods in the literature,
e.g., [16,22], the iterates generated by the proposed dictionary
learning algorithms are theoretically guaranteed to converge
to the set of stationary points under certain mild assumptions.

2. PROBLEM STATEMENT

Given a set of training signals Y = {yi ∈ R
n | i =

1, 2, . . . , N}, our task is to find a dictionary A = {ai ∈
R

n | i = 1, 2, . . . , k}that can sparsely represent the training
signals in the set Y. Let xi ∈ R

k, i = 1, . . . , N , de-
note the coefficients of sparse representation of the signal
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yi, i.e., yi =
∑k

j=1 ajxij , where xij is the j-th compo-
nent of signal xi. By concatenating all the training signals,
the dictionary elements, and the coefficients, we can define
the matrices Y � [y1, . . . ,yN ], A � [a1, . . . , ak], and
X = [x1, . . . ,xN ]. Having these definitions in our hands, the
dictionary learning problem for sparse representation can be
stated as

min
A,X

d(Y,A,X) s.t. A ∈ A, X ∈ X , (1)

where A and X are two constraint sets. The function d(·, ·, ·)
measures our model goodness of fit. In the next section, we
analyze the computational complexity of one of the most pop-
ular forms of problem (1).

3. COMPLEXITY ANALYSIS

Consider a special case of problem (1) by choosing the
distance function to be the Frobenius norm and impos-
ing sparsity by considering the constraint set X = {X ∈
R

k×N
∣
∣ ‖xi‖0 ≤ s}. Then the optimization problem (1) can

be re-written as

min
A,X

‖Y −AX‖2F , s.t. ‖xi‖0 ≤ s, ∀ i = 1, . . . , N. (2)

This formulation is very popular and is considered in differ-
ent studies; see, e.g., [22, 25]. The following theorem char-
acterizes the computational complexity of (2) by showing its
NP-hardness. In particular, we show that even for the simple
case of s = 1 and k = 2, problem (2) is NP-hard. To state
our result, let us define the following concept: let (A∗,X∗)
be a solution of (2). For ε > 0, we say a point (Ã, X̃) is an ε-
optimal solution of (2) if ‖Y− ÃX̃‖2F ≤ ‖Y−A∗X∗‖2F +ε.

Theorem 1 Assume s = 1 and k = 2. Then finding an ε-
optimal algorithm for solving (2) is NP-hard. In other words,
there is no polynomial time algorithm in N,n, log� 1

ε � that
can solve (2) to ε-optimality, unless P = NP .

The proof of Theorem (1) is lengthy and will not be presented
here due to space limitation.

It is worth noting that the above NP-hardness result is dif-
ferent from (and is not a consequence of) the compressive
sensing NP-hardness result in [26]. In fact, for a fixed spar-
sity level s, the compressive sensing problem is no longer NP-
hard, while the dictionary learning problem considered herein
remains NP-hard (see Theorem 1).

4. ALGORITHMS

4.1. Optimizing the goodness of fit

In this section, we assume that the function d(·) is composed
of a smooth part and a non-smooth part for promoting spar-
sity, i.e., d(Y,A,X) = d1(Y,A,X) + d2(X), where d1 is

smooth and d2 is continuous and possibly non-smooth. Let us
further assume that the sets A,X are closed and convex. Our
approach to solve (1) is to apply the general block succes-
sive upper-bound minimization framework developed in [27].
More specifically, we propose to alternately update the vari-
ables A and X. Let (Ar,Xr) be the point obtained by the
algorithm at iteration r. Then, we select one of the following
methods to update the dictionary variable A at iteration r+1:

(a) Ar+1 ← arg min
A∈A

d(Y,A,Xr)

(b) Ar+1 ← arg min
A∈A

〈∇Ad1(Y,Ar,Xr),A〉 +
τ r
a

2
‖A −

Ar‖2F = PA

(
Ar − 1

τ r
a

∇Ad1(Y,Ar,Xr)

)

and we update the variable X by

• Xr+1 ← arg min
X∈X

〈∇Xd1(Y,Ar+1,Xr),X〉 + τ r
x

2
‖X −

Xr‖2F + d2(X).

Here the operator 〈·, ·〉 denotes the inner product; the super-
script r represents the iteration number; the notation PA(·) is
the projection operator to the convex set A; and the constants
τra � τa(Y,Ar,Xr) and τ rx � τx(Y,Ar+1,Xr) are chosen
such that

d1(Y,A,Xr) ≤ d1(Y,Ar,Xr) + 〈∇Ad1(Y,Ar,Xr),A−Ar〉
+

τ r
a

2
‖A−Ar‖2F , ∀ A ∈ A

and

d(Y,Ar+1,X) ≤ d1(Y,Ar+1,Xr) + d2(X) +
τ r
x

2
‖X −Xr‖2F

+〈∇Xd1(Y,Ar+1,Xr),X−Xr〉, ∀ X ∈ X . (3)

It should be noted that each step of the algorithm requires
solving an optimization problem. For the commonly used
objective functions and constraint sets, the solution to these
optimization problems is often in closed form. In addition,
the update rule (b) is the classical gradient projection step
which can be viewed as an approximate version of (a). As we
will see later, for some special choices of the function d(·)
and the set A, using (b) leads to a closed form update rule,
while (a) does not. In the sequel, we specialize this frame-
work to different popular choices of the objective functions
and the constraint sets.

Case I: Constraining the total dictionary norm
For any β > 0, we consider the following optimization prob-
lem

min
A,X

1

2
‖Y −AX‖2F + λ‖X‖1 s.t. ‖A‖2F ≤ β, (4)

where λ denotes the regularization parameter. By simple cal-
culations, we can check that all the steps of the proposed al-
gorithm can be done in closed form. More specifically, using
the dictionary update rule (a) will lead to Algorithm 1. In

5285



Algorithm 1 The proposed algorithm for solving (4)
initialize A randomly such that ‖A‖2F ≤ β
repeat

τa ← σ2
max(X)

X ← X− S λ
τa

(X− 1
τa

AT (AX−Y))

A ← YXT (XXT + θI)−1

until some convergence criterion is met

this algorithm, σmax(·) denotes the maximum singular value;
θ ≥ 0 is the Lagrange multiplier of the constraint ‖A‖2

F ≤ β
which can be found using one dimensional search algorithms
such as bisection or Newton. The notation S(·) denotes the
component-wise soft shrinkage operator, i.e., B = Sγ(C) if

Bij =

⎧⎨
⎩

Cij − γ if Cij > γ
0 if − γ ≤ Cij ≤ γ
Cij + γ if Cij < −γ

where Bij and Cij denote the (i, j)-th component of the
matrices B and C, respectively.

Case II: Constraining the norm of each dictionary atom
In many applications, it is of interest to constrain the norm of
each dictionary atom, i.e., the dictionary is learned by solving:

min
A,X

1

2
‖Y −AX‖2F + λ‖X‖1 s.t. ‖ai‖2F ≤ βi, ∀ i (5)

In this case, the dictionary update rule (a) cannot be ex-
pressed in closed form; as an alternative, we can use the
update rule (b), which is in closed form, in place of (a). This
gives Algorithm 2. In this algorithm, the set A is defined as

Algorithm 2 The proposed algorithm for solving (5) and (6)
For solving (5): initialize A randomly s.t. ‖ai‖2F ≤ βi, ∀ i
For solving (6): initialize ‖A‖2F ≤ β and A ≥ 0
repeat

τx ← σ2
max(A)

For solving (5): X ← X− S λ
τx

(X− 1
τx

AT (AX−Y))

For solving (6): X ← PX
(
X− 1

τx
AT (AX−Y)− λ

)
τa ← σ2

max(X)

A ← PA
(
A− 1

τa
(AX−Y)XT

)
until some convergence criterion is met

A � {A ∣
∣ ‖ai‖2F ≤ βi, ∀ i}

Case III: Non-negative dictionary learning with the total
norm constraint
Consider the non-negative dictionary learning problem for
sparse representation:

min
A,X

1

2
‖Y−AX‖2F +λ‖X‖1 s.t. ‖A‖2F ≤ β, A,X ≥ 0 (6)

Utilizing the update rule (b) leads to Algorithm 2. Note that
in this case, projections to the sets X = {X | X ≥ 0} and

A = {A | ‖A‖2F ≤ β,A ≥ 0} are simple. In particular,
to project to the set A, we just need to first project to the
set of nonnegative matrices first and then project to the set
Ã = {A | ‖A‖2F ≤ β}.

It is worth noting that Algorithm 2 can also be applied to
the case where A = {A | A ≥ 0, ‖ai‖2F ≤ βi, ∀ i}, since
the projection to the constraint set still remains simple.

Case IV: Sparse non-negative matrix factorization
In some applications, it is desirable to have a sparse non-
negative dictionary; see, e.g., [28–30]. In such cases, we can
formulate the dictionary learning problem as:

min
A,X

1

2
‖Y −AX‖2F + λ‖X‖1 s.t. ‖ai‖1 ≤ θ, ∀ i, A,X ≥ 0

(7)
It can be checked that we can again use the essentially same
steps of the algorithm in case III to solve (7). The only re-
quired modification is in the projection step since the projec-
tion should be onto the set A = {A | A ≥ 0, ‖ai‖1 ≤
θ, ∀ i}. This step can be performed in a column-wise man-
ner by updating each column ai to [ai − ρi1]+, where [·]+
denotes the projection to the set of nonnegative matrices and
ρi ∈ R

+ is a constant that can be determined via one dimen-
sional bisection. The resulting algorithm is very similar (but
not identical) to the one in [28]. However, unlike the algo-
rithm in [28], all of our proposed algorithms are theoretically
guaranteed to converge, as shown in Theorem 2.

Theorem 2 The iterates generated by the algorithms in cases
I-IV converge to the set of stationary points of the correspond-
ing optimization problems.

Proof: Each of the proposed algorithms in cases I-IV is a
special case of the block successive upper-bound minimiza-
tion approach [27]. Therefore, [27, Theorem 2] guarantees
the convergence of the proposed methods.

4.2. Constraining the goodness of fit

In some practical applications, the goodness of fit level may
be known a-priori. In these cases, we may be interested in
finding the sparsest representation of the data for a given
goodness of fit level. In particular, for a given α > 0, we
consider

min
A,X

‖X‖1 s.t. d(Y,A,X) ≤ α, A ∈ A, X ∈ X . (8)

For example, when the noise level is known, the goodness of
fit function can be set as d(Y,A,X) = ‖Y − AX‖2F . We
propose an efficient method (Algorithm 3) to solve (8), where
the constant τx is chosen according to criterion in (3).

It is clear that Algorithm 3 is not a special case of block
coordinate descent method [31] or even the block succes-
sive upper-bound minimization method [27]. Nonetheless,
the convergence of Algorithm 3 is guaranteed in light of the
following theorem.
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Algorithm 3 The proposed algorithm for solving (8)
initialize A randomly s.t. A ∈ A and find a feasible X
repeat

X̄ ← X
X ← argminX∈X ‖X‖1 s.t. d1(Y,A, X̄) +
〈∇Xd1(Y,A, X̄),X− X̄〉+ τx

2
‖X− X̄‖2F + d2(X) ≤ α

A ← argminA∈A d(Y,A,X)

until some convergence criterion is met

Theorem 3 Assume that (X̄, Ā) is a limit point of the it-
erates generated by Algorithm 3. Furthermore, assume
that the subproblem for updating X is strictly feasible at
(X̄, Ā), i.e., there exists X̃ ∈ X such that d1(Y, Ā, X̄) +

〈∇Xd1(Y, Ā, X̄), X̃− X̄〉 + τx
2
‖X̃ − X̄‖2F + d2(X̃) < α. Then

(X̄, Ā) is a stationary point of (8).

This theorem is similar to [32, Property 3]. However, the
proof here is different due to the lack of smoothness in the
objective function. The proof is omitted due to the space
limitation.

5. NUMERICAL EXPERIMENTS

In this section, we apply the proposed sparse dictionary learn-
ing method, namely algorithm 2, to the image denoising ap-
plication; and compare its performance with that of the K-
SVD algorithm proposed in [18] (and summarized in Algo-
rithm 4). As a test case, we use the image of Lena corrupted
by additive Gaussian noise with various variances (σ 2).

In Algorithm 4, Ri,jS denotes the image patch centered at
(i, j) coordinate. In step 2, dictionary A is trained to sparsely
represent noisy image patches by using either K-SVD algo-
rithm or Algorithm 2. The term xi,j denotes the sparse rep-
resentation coefficient of the patch (i, j). In K-SVD, it (ap-
proximately) solves 
0-norm regularized problem (9) by using
orthogonal matching pursuit (OMP) to update X. In our ap-
proach, we use Algorithm 2 with A = {A | ‖ai‖ ≤ 1, ∀ i =
1, · · · , N} to solve the 
1-penalized dictionary learning for-
mulation (10). We set μi,j = c(0.0015σ+0.2), ∀ i, j, in (10)
with c = 1

I×J

∑
i,j ‖Ri,jS‖2, and I × J denotes the total

number of image patches. This choice of the parameter μ ij

intuitively means that we emphasize on sparsity more in the
presence of stronger noise. Numerical values (0.0015, 0.2)
are determined experimentally. The final denoised image S is
obtained by (11) and setting β = 30/σ, as suggested in [18].

σ/PSNR DCT K-SVD Algorithm 2
20/22.11 32 32.38 30.88
60/12.57 26.59 26.86 26.37
100/8.132 24.42 24.45 24.46
140/5.208 22.96 22.93 23.11
180/3.025 21.73 21.69 21.96

Table 1. Image denoising result comparison on “Lena" for different noise
levels. Values are averaged over 10 Monte Carlo simulations.

K−SVD Algorithm 2

K−SVD (zoomed in) Algorithm 2 (zoomed in)

Fig. 1. Sample denoised images (σ = 100).

Algorithm 4 Image denoising using K-SVD or algorithm 2
Input: noisy image Y, noise variance σ2

Output: denoised image S
1: Initialization: S = Y, A = overcomplete DCT dictionary
2: Dictionary learning:

K-SVD:

min
A,X

∑
i,j

μij‖xi,j‖0 +
∑
i,j

‖Axi,j −Ri,jS‖2 (9)

Algorithm 2:

min
A∈A,X

∑
i,j

μij‖xi,j‖1 +
∑
i,j

‖Axi,j −Ri,jS‖2 (10)

3: S update:

S = (βI+
∑
i,j

RT
i,jRi,j)

−1(βY +
∑
i,j

RT
i,jAxi,j) (11)

The final peak signal-to-noise ratio (PSNR) comparison is
summarized in Table 1; and sample images are presented in
Figure 1. As can be seen in Table 1, the resulting PSNR values
of the proposed algorithm are comparable with the ones ob-
tained by K-SVD. However, visually, K-SVD produces more
noticeable artifacts (see the circled spot in Figure 1) than our
proposed algorithm. The artifacts may be due to the use of
OMP in K-SVD which is less robust to noise than the 
1-
regularizer used in Algorithm 2. As for the CPU time, the two
algorithms perform similarly in the numerical experiments.
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