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ABSTRACT

The Sparse Bayesian learning (SBL) framework has been
successfully adopted for sparse signal recovery. In SBL
inference can be performed either via Type-II Maximum
Likelihood or by following a Variational approach. When
employing uninformative prior distributions, fast algorithms
have been proposed for both renditions of SBL and it has
been proven that they are equivalent. Unfortunately the use
of such priors prohibits the incorporation of prior statistical
information which can be beneficial in terms of convergence
and accuracy. A modified variational approach is proposed,
resulting in a fast variational algorithm for informative priors.
A fixed point analysis is performed with the major challenge
being the highly involved analytical expressions for the points
in the fixed set. The given theoretical analysis demonstrates
how this issue can be circumvented. Comprehensive empiri-
cal results are given to support the claims.

Index Terms— sparse Bayesian learning, variational
RVM, fast RVM, informative priors

1. INTRODUCTION

Sparse Bayesian Learning (SBL) was introduced in [1] and
accomplishes via a hierarchy of distributions to produce
highly sparse models for the input. An inference algorithm
is derived to recover the most probable values for the model
parameters and the controlling hyper-parameters. This is best
known as Type-II Maximum Likelihood. Under the assump-
tion that the hyper-prior distributions are uninformative a fast
version of this algorithm was proposed in [2] and [3]. Its use
for sparse signal recovery was showcased in [4].

A fully Bayesian treatment was introduced in [5] with the
variational rendition of SBL (VSBL). The VSBL provides
estimates for the distributions of both the model parameters
and hyper-parameters as opposed to Type-II ML which as-
sumes point estimates for the hyper-parameters. This exten-
sion makes SBL more flexible and the recovery algorithm
more controllable; something intractable for Type-II ML. Un-
der the uninformative assumption a fast VSBL algorithm was
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proposed in [6]. It was proven that the fast algorithms for
VSBL and Type-1I ML are equivalent.

We are concerned with cases where previous knowledge
for a sparse signal needs to be incorporated into the recov-
ery algorithm. Prior information can result in improved con-
vergence speed and reconstruction accuracy. The VSBL ap-
proach is fitting for these scenarios but regrettably the fast al-
gorithms can no longer be used. The method by which com-
plexity is reduced in the fast VSBL algorithm unfortunately
cannot be employed because of the bias introduced by the in-
formative prior.

In this paper we perform a fixed point analysis of VSBL
as a first step to control complexity. This was primarily the
case in [6] for the uninformative case. The major challenges
in our approach are the highly complicated mathematical ex-
pressions for when an informative prior is used. These pro-
hibited the derivation of any results towards speeding up in-
ference. The given theoretical study proposes advantageous
workarounds that are practical and computationally efficient.
We demonstrate that fast VSBL is in fact possible for infor-
mative priors and that complexity can be controlled.

In Section 2 a summary of the fast VSBL is given. Fol-
lows in Section 3, a rigorous analysis of fast VSBL for in-
formative priors. We provide theoretical results that support
a fast approach. In Section 4 ample empirical evidence on
synthetic data is provided to support our claims. The perfor-
mance of the modifications is compared against the conven-
tional VSBL in terms of the strength of the prior, convergence
speed, reconstruction error and problem size.

2. VARIATIONAL BAYESIAN LEARNING

The learning process is concerned with recovering the most
probable values for the model parameters @ for a specific in-
put y. The investigated models deal with cases where the
parameter vector is sparse. In mathematical terms,

y=®Pxr+n @))]

where ® € RM*N and n ~ N(0,0%1).
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2.1. Variational Inference

In SBL [1] one separate hyper-parameter «; is contemplated
to control the variance of each component z;:

p(z|la) = H./\/(x,;|07ai_1) :J\/'(m|0,A*1)

where matrix A = diag ([, ,@,]). Hyper-prior dis-
tributions are also defined as p(«;) = Gamma(«;|a,b) =
bl e /T'(a) where I'(a) is the Gamma function [1].

In the uninformative case a = b = 0 expresses no prior
biases, i.e. uninformative. From the Bayes rule the posterior
is p(z, a, o%|y) = p(z|y, o, 0?)p(cx, 0% |y). While the first
part of the right-hand side is tractable, an approximation to the
second part has to be found by the maximum likelihood solu-
tion of p (y|ex,0%) = [ p(y|e, 0?)p(x|a)da. This is widely
known as Type-II Maximum Likelihood. We disregard mod-
elling the noise without compromising generality.

In the informative case, i.e., VSBL [5], it is assumed that
a; > 0 and b; > 0. An approximation to the posterior
p(x, a,0?ly) =~ p(x,a,0?) = q(x)q(a)q(c?) is used with
q(x) = N(@|p, =) , gla) = [TX, Gala|as, b;) where the
parameters are given by the well-known update formulae:

o\ —1
» = (U%T@ n A) L u=o2neTy 2)

|| * + s

. 1 -
ai:aiJFi» bi = b; + 5

~ a;
; L, 3)
We redirect to [5] for the noise distribution parameter update
expressions. The expression for &; is the mean E[e;] of a
Gamma distribution.

In this sense the VSBL is more general, acting in a fully
Bayesian framework by providing closed form solutions to
approximations of distributions that are intractable to derive
analytically. The VSBL is ideal for when the estimates of the
hyper-prior distributions are required, something which be-
comes unmanageable within the Type-II ML framework. The
price to pay is higher computational complexity. This case
will occupy us for the rest of the paper.

2.2. The Fast Variational Approach

By maintaining a; = b; = 0, V ¢ € [1, N] the authors in
[6] manage to decouple the estimated hyper-parameters from
each other in a way similar to [3] and control complexity. The
non-linear map for a specific hyper-parameter at iteration m
is derived,

2 2
R zi + 2z;w; z
= |w; +z; —

[m+1]

?

1
—Tm7 + 2
@

= F(ai™) “

= U2eiTE,i‘I)Tny<I>E,iei,
E,i = (0’2’1)22»(1),2' + A,1> 1, A = dlag([&l, s ,dn])
and [ is the map function. Notation ®_; means the removal
of column ¢ while A_; the removal of row and column i.
Fixed point analysis is performed by letting m — oco. At
convergence it holds that /™™ = al™ = ar. By solv-
¥) = 0 two fixed points are found which are

ing &f — F (&
asymptotically stable:

i
Gy — (w?_zi)ilr wf
(2 wlz

“+o00

where z; = el'¥_,e;, w?

(&)

Zi
Zi.

IN V

It was proven in [6] that the fast VSBL algorithm is equiva-
lent to the fast Type-II ML algorithm in [3]. When &, =0
then it is implied that z; = 0 and the derivation of a closed
form expression for the fixed point makes it possible to reduce
complexity in the VSBL by avoiding extraneous iterations.

3. FAST VSBL FOR INFORMATIVE PRIORS

The uninformative assumption is proven to result in efficient
algorithms for sparse signal recovery. Problems arise with
the need to incorporate prior knowledge into the model. This
is particularly the case when recovering time series of sparse
signals where past information can be used to improve the
speed and the accuracy of convergence.

An informative prior can control the uncertainty but this
forces us to abandon the fast algorithm for variational infer-
ence [6]. This is verified by inspecting Equations (3). As-
suming that' a; > 0,b; > 0 the value of 64;1 = (0 becomes
unattainable making the pruning rule in Equation (5) obso-
lete. Computational complexity then increases and becomes
worse than iteratively updating Equations (2) and (3).

3.1. Introducing prior knowledge

We follow [6] by adopting a fixed point analysis. Regrettably,
when a; > 0,b; > 0 the analysis complicates considerably
since the bias introduced by the prior results in the expression
given below,

Zw;

(ﬁ +2i)?

22 4+ 2wz

~[lm] + z;
a

(204' =+ 1)

2
Al = 2bi + wi + 2 =

+

=G(a™). ©)

To derive the fixed points of the above map function we
attempt solving the following,

ar — G (&) =0. 7

K2 7

We discover that the choice of an uninformative prior resulted
in the well-posed polynomial of Equation (4) which could be

1Only the range of values where a; > 0, b; > 0 are considered for which
the Gamma distribution is well defined.
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rapidly factorised. For the informative case this convenience
vanishes. Attempts for analysing the closed form solutions
can be found in [7, Appx. B] but the results are not of prac-
tical or theoretical use. Nevertheless, the following theorem
substantially simplifies the computation of the fixed points.

Theorem 1. Assume a Gamma hyper-prior for a; with a; >
0,b; > 0 and that the values of oj; are fixed. Let & be the

value at which the map function G' converges when iteration

m — oo. Then B = 1* + z; is one of the three solutions of

a

the cubic polynomial?,
fB) +9(Bf) =0 ®)

that satisfies 3} > z;*, where f(B;) = (B; — w?) (B; — z)?
and g(B7) = 2(B;)? (ai(B; — z) — bi).

Proof (sketch): Starting from Equations (3) the expression for
@; is formed for a; > 0,b; > 0 which is given in Equation (6).
By applying the variable change and after some mathematical
manipulation one arrives at the stated claim.

Theorem 1 provides a workaround for the intricacy of the
analytical expressions. It is proposed that the solutions of
Equation (7) can equivalently be acquired by solving Equa-
tion (8). We observe that Equation (7) can be divided into
two distinct functions f, g; where the contribution from the
prior is given by function g(5;). By setting a; = b; = 0 we
fall back to solving f(3;) = 0 which gives the fixed points in
Equation (5).

3.1.1. Cardinality of the fixed points

Theorem 1 provides useful intuition for the fixed points and
facilitates further qualitative analysis by using functions f and
g. A full scale analysis is not collocated here due to space
requirements. The following proposition has been proven.

Proposition 1. Assume that the same conditions hold as in

Theorem 1. Solving Equation (7) can result in one of the fol-

lowing cases:

1. ifw? < z;, then there exists only one valid root,

2. ifw? > z, then for 571 > 2(w? — z;) there exists only one
valid root,

3. ifw? > z, then for Z—i < 2(w? — z;) there may exist three
distinct valid roots.

By Proposition 1 it is possible for the fixed set to contain
three distinct real fixed points. This case was a rarity during
empirical tests. A numerical example can be constructed by
setting w? = 0.6, z; = 0.4, a; = 0.02 and b; = 0.002.

2Closed form solutions for the cubic equation can be found in algebra
textbooks or on-line.
3Henceforth, we consider roots satisfying B > z; as valid roots.

3.1.2. Fixed point selection

Focusing on the third case where x; is deemed to be non-zero
but the exact value of & can be any of the three in the fixed
set. In order to resort to a choice the stability of each fixed
point has to be assessed. This requires the analytical expres-
sion of gg to be derived for each of the fixed points. The
highly complicated expressions unfortunately prohibit this
analysis.

A reasonable choice is to choose the fixed point that max-
imises the variational lower bound,

L =(Inp(y|lw)) + (Inp(w|a)) + (In(a))
— (Ing(w) — (Ing(a)). ©)

The interested reader is redirected to [5] for the derivation and
more details on the computation of Equation (9).

Motivated by extensive simulations we appose the follow-
ing conjecture which suggests a simple and effective remedy
to this problem.

Conjecture 1. If w? > z; and the solution of Equation (7)

results in three distinct real roots 0 < &} < a2 < a3 < +00
then dll causes the variational lower bound L to increase the
most.

It is argued that in the case where three distinct real fixed
points exist, the best choice as far as the lower bound is con-
cerned is to select the smallest one in value. Conjecture 1
provides excellent empirical results and its proof is part of the
authors’ ongoing work.

3.2. Controlling complexity for superfluous parameters

Improvements in terms of complexity can be achieved by re-
ducing the number of parameters that need to be updated.
Proposition 1 (Case 1) suggests that the parameter updates
corresponding to component x; = 0 cannot be pruned ana-
Iytically since a valid fixed point is possible. Assessing its
stability is analytically intractable and even then there is no
guarantee that the fixed point &; related to x; = 0 will be-
come unstable so as to disregard the corresponding parameter
updates. A practical way is to update only the parameters for
which &g is above a certain threshold. In [6] it was proven
that w? />, = SN R;, the signal-to-noise ratio for z;. Our ap-
proach is to update only the parameters for which &} > o2.

4. EMPIRICAL RESULTS

The performance of the proposed algorithm namely the f-
VSBL is assessed. At first we compare the performance of f-
VSBL against VSBL in terms of sparse signal recovery, con-
vergence speed (iteration count m) and reconstruction error
e. The entries of ® € R128%256 are drawn from N(0,1/am).
Signal « is a zero-one sparse signal with support set 7 cho-
sen uniformly at random from [1, N] with |7] = 20 and
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(b) f-VSBL converges faster, at a higher lower bound with smaller error.

Fig. 1. Reconstruction performance for ® € R128%256 |7 = 20 and 0® = 0.01 for a zero-one sparse signal. The Gamma

distribution parameters are set to a; = b; = 0.13.

o? = 0.01. A single run of the algorithms was performed
with y, o2 as input. The sparsity level needs not be known,
which is a powerful aspect of Bayesian methods. The Gamma
parameters were set to a; = b; = 0.13 for all i € [1, N]. In
Figure 1(a) the original signal is shown versus the recovered.
The f-VSBL does not suffer from the small amplitude compo-
nents giving an exactly sparse signal. This causes a decrease
in convergence speed as shown in 1(b) where f-VSBL con-
verges in only 10 iterations. Convergence was assumed when
the difference in the variational lower bound went below 0.18.
The number of iterations was limited to 30 since VSBL in
our tests took more than 700 iterations to converge. It is also
shown that the f-VSBL achieves a significantly higher varia-
tional lower bound and higher reconstruction accuracy.

Table 1 compares the convergence speed and runtime (in
seconds) of f~-VSBL. In this scenario increasing problem sizes
are considered, i.e., the design matrix ® is re-sampled at dif-
ferent sizes. The sparsity level and prior distribution strength
are kept unchanged. It is evident that the proposed algorithm
succeeds in recovering sparse signals under the informative
assumption showcasing significantly reduced computational
complexity and runtime.

For Table 2 we assume a stringent scenario. We con-
sider a subset S C T for which a stronger prior is employed
expressing prior preference. We set a; = b; = 0.1° for
i € T — S while the prior for ¢ € S varies as shown in Ta-
ble 2. The algorithm is tested for different sizes of S against
reconstruction error, recovered support set cardinality || 7|
and iteration count. It is considered that |77 = 50 while
® c RI28x256 Recovery using uninformative priors under-
performs with ||e||]s = 0.55 and 7' = 71. Table 2 shows
that for adequately large S exact recovery is possible. By in-
creasing the strength of the prior is it also possible to improve

convergence speed.

Problem Iterations (m)

Size f-VSBL VSBL {-VSBL VSBL

Runtime (sec)

128 %256 10 40 0.44 0.75
256x512 9 39 1.20 391
512x1024 8 38 6.63 25.28
1024 %2048 9 38 62.2 142.88

Table 1. Comparison for a; = b; = 0.13, |T| = 20, 02 =
0.01 and for increasing problem size.

Prior |S] =15 |S| =30
ai=bi el [T m el T[] m
0.1 0.54 71 35 0.13 50 11
1 0.57 71 48 0.13 50 10
102 0.55 69 24 0.12 50 9

10° 0.62 69 27 0.12 50 9

Table 2. Comparison for ® € R28%256 |T| = 50, 02 =
0.01 at different sizes of S against different prior strength.

5. CONCLUSION AND FUTURE WORK

Modifications have been proposed to VSBL that reduce com-
plexity for when informative priors are considered. Com-
plicated analytical expressions are avoided in the fixed point
analysis. The empirical results support the theoretical claims.
Ongoing work involves proving Conjecture 1 and extending
the authors’ previous work in [8, 9].
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