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ABSTRACT

We examine the problem of approximating the mean of a set
of vectors as a sparse linear combination of those vectors.
This problem is motivated by a common methodology in ma-
chine learning where a probability distribution is represented
as the sample mean of kernel functions. In applications where
this kernel mean function is evaluated repeatedly, having a
sparse approximation is essential for scalability. However,
existing sparse approximation algorithms such as matching
and basis pursuit scale quadratically in the sample size, and
are therefore not well suited to this problem for large sam-
ple sizes. We introduce an approximation bound involving a
novel incoherence measure, and propose bound minimization
as a sparse approximation strategy. In the context of sparsely
approximating a kernel mean function, the bound is efficiently
minimized by solving an appropriate instance of the k-center
problem, and the resulting algorithm has linear complexity in
the sample size.

Index Terms— sparse approximation, kernel methods, k-
center problem, incoherence

1. INTRODUCTION

We consider the problem of sparsely approximating the mean
of a set of vectors. Although we are motivated by a problem
in machine learning, we begin by stating the problem more
generally.

Consider a set of n vectors {z1, ..., zn} ⊆ V , where
(V, 〈·, ·〉) is an inner product space of arbitrary dimension,
and define [n] := {1, . . . , n}. Let ‖ · ‖ denote the induced
norm on V and, for α ∈ Rn, define ‖α‖0 := |{i |αi 6= 0}|.
Given an integer k, 1 ≤ k < n, we would like to find the best
approximation to the sample mean of {z1, ..., zn} as a linear
combination of k sample points. That is, we want to solve:

min
α
‖z̄ − zα‖ subject to ‖α‖0 = k (1)

where z̄ := (1/n)
∑
i∈[n]zi and zα :=

∑
i∈[n] αizi.

ECC and CS were supported in part by NSF Grants 0953135, 1047871,
and 1217880.

Problem (1) is in the form of the standard sparse approx-
imation problem [1]. Existing sparse approximation algo-
rithms, such as matching pursuit and basis pursuit, require
the computation of the matrix K := (〈zi, zj〉)i,j∈[n], which
causes these algorithms to scale quadratically in n. We are
interested in settings where n is potentially large, and in the
context of our motivating task, we propose an approximate
solution to (1) having linear complexity in n. Instances in
which existing algorithms can be implemented to scale lin-
early in n develop a quadratic dependency on the dimension
of V , which in our case is arbitrary, possibly infinite, and are
therefore prohibitive.

1.1. Motivation: Sparse Kernel Representations of Prob-
ability Distributions

This work is motivated by kernel methods in machine learn-
ing. In particular, there are two well-established paradigms
for representing a probability distribution as the sample mean
of kernel functions. In both paradigms, zi = kσ(·, xi), where
xi ∈ Rd, and kσ is a kernel function with bandwidth parame-
ter σ. Thus, V is a space of functions.

In kernel density estimation, a random sample x1, . . . , xn
is drawn from a distribution with density f . The kernel den-
sity estimate (KDE) of f is

f̂ =
1

n

∑
i∈[n]

kσ(·, xi) = z̄ . (2)

In this context, kσ is usually assumed to satisfy kσ(x, x′) ≥ 0
and

∫
kσ(x, x′)dx = 1. For most commonly used kernels we

can take V = L2(Rd). If kσ happens to be a reproducing
(equivalently, positive semi-definite (PSD)) kernel, we may
take V to be the associated reproducing kernel Hilbert space
(RKHS), in which case 〈zi, zj〉 = kσ(xi, xj).

The second paradigm is the kernel mean embedding of a
distribution P . Here kσ is required to be a PSD kernel, and
the embedding maps P to kσ’s corresponding RKHS by the
transformation Ψ(P ) :=

∫
kσ(·, x)dP (x). In practice, Ψ is

estimated from a random sample x1, . . . , xn ∼ P by

Ψ̂(P ) :=
1

n

∑
i∈[n]

k(·, xi) = z̄ . (3)

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5274



The above kernel representations are used to solve a vari-
ety of machine learning and signal processing problems, such
as regression [2, 3], image registration [4], canonical corre-
lation analysis [5], class proportion estimation [6], clustering
[7,8], and transfer learning [9]. For these applications a sparse
representation takes the form zα =

∑
i|αi 6=0 αikσ(·, xi). For

k � n, such a representation would be much more efficient
with respect to both storage and evaluation. We also assume
that 〈z, z′〉 = 〈kσ(·, x), kσ(·, x′)〉 can be computed with lin-
ear complexity in d, which is the case for many common ker-
nels. We will demonstrate an approach for solving (1) with
O(nkd) time complexity. Our approach also suggests online
and divide-and-conquer implementations for further scalabil-
ity.

1.2. Related Work

Efficient representation and evaluation of a sum of kernel
functions has been examined from a variety of perspectives.
Fast multipole methods approximate the sum of kernel func-
tions using truncated Taylor series expansions [10]. However,
these methods are only well motivated in low dimensions,
since the error of the truncated Taylor series expansions
grows exponentially in the dimension. Techniques for sparse
kernel density estimation have been proposed, but these have
quadratic complexity in the sample size [11,12] and also rely
on grid-based approximations of the empirical distribution
function, which scale poorly with dimension. Methods for
collapsing large mixture models to simpler ones have also
been investigated, but once again, these approaches scale
quadratically in the sample size [13–17]. Finally, [18] ex-
amined approximating a mean of kernel functions from the
perspective of sparse approximation. Comparisons to this
work are given below.

2. SUBSET SELECTION BY INCOHERENCE
MAXIMIZATION

To begin, we let I ⊆ [n] denote an index set and reformulate
problem (1) as

min
I⊆[n]
|I|=k

min
(αi)i∈I

‖z̄ −
∑
i∈I

αizi‖2 . (4)

Now we can find the optimal α and eliminate it from (4).
Given k and for fixed I, letαI ∈ Rk denote the solution to the
inner optimization problem. Notice that αI is the solution to
an unconstrained quadratic optimization problem, and can be
shown to satisfy αI = K−1I κI , where KI = (〈zi, zj〉)i,j∈I
and κI is the vector with entries (1/n)

∑
j∈[n] 〈zl, zj〉, l ∈ I.

Now write αI = (αI,i)i∈I and set zI =
∑
i∈I αI,izi. Then

(1) reduces to
min
I⊆[n]
|I|=k

‖z̄ − zI‖ . (5)

Our strategy to solve (5) involves finding an upper
bound on ‖z̄ − zI‖ that depends on I, and then finding
the set I that minimizes the bound. To do this, we define
νI := min

j /∈I
max
i∈I

〈zi, zj〉, which is a measure of the “incoher-

ence” of {zi | i ∈ I}, and establish the following:

Theorem 1. Assume 〈zi, zi〉 = C ∀ i ∈ [n], for some C > 0.
Then, for every I ⊆ [n],

‖z̄ − zI‖ ≤
(

1− |I|
n

)√
1

C
(C2 − ν2I) . (6)

The proof is placed in the last section. Given a fixed |I|,
from this result we see that choosing I so as to minimize the
bound is the same as choosing I so as to maximize νI .

Noumir et al. [18] establish a bound of the same form
based on the coherence parameter µI = max

i,j∈I
i 6=j

| 〈zi, zj〉 | in-

stead of νI , and they advocate selecting I by minimizing µI .
However, their bound only holds for the set I which min-
imizes µI , which does not suggest bound minimization as
a viable strategy. Furthermore, the bound actually increases
as µI decreases. Additionally, their algorithm evidently re-
quires the computation of the complete gram matrix of the
data, which is an O(n2) procedure. In the next section we
show that, in the context of approximating means of radial
kernels, maximizing νI reduces to the well known k-center
problem.

3. THE K-CENTER PROBLEM

We now develop an algorithm for maximizing νI , subject to
|I| = k, in the context of our motivating application. Thus,
let x1, . . . , xn ∈ Rd and let z̄ = (1/n)

∑
i∈[n] kσ(·, xi). We

assume that kσ is such that 〈zi, zj〉 = gσ(‖xi−xj‖) for some
gσ : R −→ R. For example, the Gaussian kernel has gσ(t) =

(2πσ2)−d/2e−t
2/2σ2

when V is the RKHS associated with
kσ . Note that 〈zi, zi〉 = C = gσ(0) for each i. We also
assume that gσ(t) is strictly decreasing for t ≥ 0, which is the
case for most kernels of interest.

Let I∗ be the set that minimizes the upper bound of The-
orem 1. By the assumed monotonicity of gσ ,

I∗ = arg min
I⊆[n]
|I|=k

max
j /∈I

min
i∈I
‖xi − xj‖. (7)

Let XI = {xi | i ∈ I} and YI = {xj | j /∈ I}, and for
every xj ∈ YI , define its distance to XI as d(xj , XI) =
min
i∈I
‖xi−xj‖. Define alsoW (XI) = max

xj∈YI
d(xj , XI). Our

goal is therefore to find the set I of size k for which W (XI)
is minimized. This is known as the k-center problem.

The k-center problem is known to be NP-complete [19],
and we will use a greedy 2-approximation algorithm to solve
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it [20]. By 2-approximation we mean that W (XIk) ≤
2W (XI∗), where Ik is the set chosen by the algorithm.
This performace guarantee is the best possible in the sense
that there is no ρ-approximation algorithm for any ρ < 2 [21].
The algorithm is described in Algorithm 1 [20].

Input: x1, . . . , xn, k
Initialization:
X ←− ∅;
Y ←− {x1, . . . , xn};
Choose randomly a first index u ∈ [n];
X ←− X ∪ {xu};
Y ←− Y \{xu};
while |X| < k do

Choose the element y ∈ Y for which d(y,X) is
maximized;
X ←− X ∪ {y};
Y ←− Y \{y};

end
Output: Ik = {i ∈ [n] |xi ∈ X}

Algorithm 1: k-center algorithm

From the algorithm we see that at each iteration, we only
compute n new distances, those from the set Y to the most
recent element of X . Since the dimension is d, each itera-
tion takes nd steps. Upon termination, we will have added k
elements toX , so the algorithm’s time complexity isO(nkd).

4. SIMULATION

We now evaluate the performance of the algorithm for dif-
ferent values of k. We compare our algorithm to a baseline
approach that selects I uniformly at random.

4.1. Setup

To evaluate our proposed method we have used fifteen
data sets, listed in Table 1. Iris is available at the UCI
machine learning repository. The next 10 sets are drawn
from http://www.fml.tuebingen.mpg.de/Members/ (accessed
2010). C500 is a data set of 500 points randomly sampled
from a distribution uniform over a circle of radius five plus
bivariate Gaussian noise with .1 variance, C2000 is a data set
of 2000 points drawn from the same distribution. G3 are 2000
points drawn from the 3-dimensional standard Gaussian, G5
comes from five dimensions.

We have chosen k = 100, and computed {αIj}1≤j≤k
for both the k-center algorithm and the random baseline al-
gorithm in order to evaluate their performances. Since for the
k-center method the first element of Ik is chosen randomly,
different runs will yield different results. Therefore, we have
run the experiments ten times and averaged over the results.

For the k-center method, the total time per run isO(nkd+
k3). To see this, we used the fact that if we add one new

element (say, element i) to the set Ij , forming Ij+1 = Ij∪{i}
with |Ij+1| = j+1, there is a way to update αIj inO(j2+jd)
steps, see [18]. Therefore, having a target set Ik of size k, we
can compute {αIj}1≤j≤k in O(k3 +k2d) time. Since we can
compute {Ij}1≤j≤k in O(nkd) time, the whole process is
O(nkd+k3), which remains O(nkd) as long as k2 is O(nd).

Letting {x1, . . . , xn} indicate the data, we have chosen
kσ the Gaussian kernel and V its RKHS, so that 〈zi, zj〉 =
kσ(xi, xj).

For each algorithm, we measure its performance by com-
puting E2

I := ‖z̄ − zI‖2 − ‖z̄‖2 = ‖zI‖2 − 2 〈z̄, zI〉 (we
don’t compute ‖z̄‖2, since it is the same for every |I|, and it
takes O(n2) time), and also by computing the KL distance
D(q ‖ p), where p =

∑
i∈Iαizi and q = (1/n)

∑
l∈[n]zl.

Note that in this case zi(x) = kσ(x, xi).
To compute the KL divergence we made the following ap-

proximation: D(q ‖ p) = Eq(log q
p ) ≈ 1

M

∑M
m=1 log q(xm)

p(xm) ,
where each of the xm’s are realizations of independent r.v.’s
with distribution q. Since both p and q are gaussian mixtures,
this is easy to simulate.

When computing the KL divergence, in order for zI to be
a pdf we need αI to be a pmf. We have taken two approaches
to achieve this. In the first one we set to zero all αI,i’s with
negative values and then renormalize so as to have the αI,i’s
add up to one. The second approach is like the first one, but
we additionally take a preparatory step, in which we impose
the constraint

∑
i∈I αi = 1 to problem (4), which can be

shown to yield

αI = K−1I

(
κI +

(
1− 1TK−1I κI

)
1TK−1I 1

1

)
, (8)

where 1 is the vector in Rk of all ones. We will use the symbol
α
(1)
I for the result of the first approach, and α(2)

I for the result
of the second one. For each method of computing αI , we use
the Wilcoxon signed rank test [22] to compare the random
and k-center methods across the datasets.

To determine the kernel parameter σ, we used a data de-
pendent heuristic. We let σ be the median distance to the N th

nearest neighbor, for N = 3, 5, 7, 9, 11. To evaluate which σ
performs better, we considered E2

Ij , for 5 ≤ j ≤ 100, and
measured the ratio of the drop between j = 5 and j = 20 to
the drop between j = 5 and j = 100. We then chose the σ
that maximized this ratio.

4.2. Results

We can see from Table 1 that the k-center algorithm outper-
forms random selection under the D(q‖p) performance mea-
sure for almost all data sets when j = 50. To understand why
the KL divergence D(q‖p) is larger for the random algorithm
than for k center, note that a largeD(q‖p) will result when the
estimated distribution p does not capture information from the
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Table 1: D(z̄‖zα)

α
(1)
I α

(2)
I

rand k-cent rand k-cent
Iris 0.0725 0.0036 0.0580 0.0070

Banana 0.3225 0.0092 0.3250 0.0080
Image 65535 5.7055 65535 6.3122

Ringnorm 0.0142 0.0351 0.0212 0.0402
Breast Cancer 0.0698 0.0057 0.0657 0.0098

Heart 0.0137 0.0050 0.0124 0.0126
Thyroid 0.5120 0.0068 0.4957 0.0065

Diabetes 0.0494 0.0469 0.0467 0.0449
German 0.0304 0.0325 0.0345 0.0441

Twonorm 0.0108 0.0142 0.0083 0.0161
Waveform 0.0202 0.0195 0.0135 0.0205

C500 0.3048 0.0399 0.3538 0.0384
C2000 15.546 11.443 15.371 11.373

G3 0.0691 0.0022 0.0677 0.0015
G5 0.0143 0.0041 0.0136 0.0034

Values of D(z̄‖zα) for different data sets and for k = 50.
The Wilcoxon test for the first two columns gives a p-value of
.0054, and for the last two columns p = .022

sample mean q. Recall that the random algorithm picks ele-
ments from densely populated areas, which in turn causes a
poor representation of the tails of q, while the k-center algo-
rithm, having elements far from each other, is able to capture
well the tails of q. Note that the resulting p-values are under
the typical significant level of .05.

The random algorithm usually outperforms the k-center
method under theE2

I performance measure when |I| is small,
as seen on Figure 1. The initial advantage of random may
be due to the fact that at the beginning it picks elements in
dense areas, which will represent the mean better than out-
lying points. Meanwhile, the k-center agorithm begins by
selecting points near the boundary of the data support, corre-
sponding to the tails of the distribution. The improvement of
the k-center algorithm is noticeable once it has added enough
elements so as to approximate the full support of the distribu-
tion, while the convergence of the random algorithm slows,
since it takes longer to select points out in the tails of the dis-
tribution.

5. CONCLUSION

We have shown that for certain radial kernels, the k-center
algorithm can be applied to solve the original sparse approxi-
mation problem with time complexityO(nkd+k3). We antic-
ipate that our approach will extend to online and divide-and-
conquer implementations, because corresponding algorithms
for the k-center problem exist for these settings [23–25].

Fig. 1: k vs rand

Comparison of E2
I between the random algorithm and the k-

center algorithm for the Banana data set.

6. PROOF OF THEOREM

Proof of Theorem 1. The beginning of this proof is similar to
the one in [18]. Let SI := {zi | i ∈ I} and denote PI the
projection operator onto S := span(SI) and I the identity
operator. For optimal α, we have

‖z̄ − zI‖ = ‖z̄ − PI z̄‖ =
1

n
‖
∑
i∈[n]

(I − PI)zi‖

≤ 1

n

∑
i∈[n]

‖(I − PI)zi‖ =
1

n

∑
i/∈I

‖(I − PI)zi‖

where we have used the triangle inequality, and the last equal-
ity is due to the fact that zi = PIzi when zi ∈ SI .

Now, since (zi − PIzi) ⊥ PIzi, we can use Pythagoras’
Theorem in V to get ‖zi − PIzi‖2 = ‖zi‖2 − ‖PIzi‖2.

It can be shown that ‖PIzi‖ = max
z∈S, ‖z‖=1

〈zi, z〉. There-

fore, for i /∈ I,

‖PIzi‖ =
1√
C

max
z∈S,‖z‖=

√
C
〈zi, z〉

≥ 1√
C

max
`∈I
〈zi, z`〉

≥ 1√
C

min
j /∈I

max
`∈I
〈zj , z`〉 =

1√
C
νI .

Thus, for i /∈ I,

‖zi‖2 − ‖PIzi‖2 ≤ C −
ν2I
C

and finally

‖z̄ − zI‖ ≤
1

n

∑
i/∈I

√
C −

ν2I
C

=

(
1− |I|

n

)√
1

C
(C2 − ν2I) .
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