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ABSTRACT

This paper proposes an efficient framework for learning a
high-dimensional nonlinear mapping using compressed sens-
ing techniques. Given a training data set of the input and out-
put pairs of the mapping to be learned, our framework reduces
both the dimensionalities of the input and output spaces by
efficient computation of random projection, and then learns
a nonlinear mapping between the low-dimensional input and
output data. The high-dimensional nonlinear mapping con-
sists of (i) dimensionality reduction by the random projection
of the input data, (ii) low-dimensional nonlinear mapping, and
(iii) reconstruction of the high-dimensional output data on the
basis of a sparse model. The processes (i) and (ii) construct
a single hidden layer feedforward neural network, which can
efficiently be learned by the extreme learning machine.

Index Terms— Efficient random projection, SLFN, ELM,
dimensional scalability

1. INTRODUCTION

In this paper, we aim to develop a framework for learning
a nonlinear function from a given set of pairs of input and
output vectors with more than thousands of dimensions. A
dimensionality-scalable machine learning technique for ap-
proximating an arbitrary function would have many poten-
tial applications such as nonlinear filtering and image pro-
cessing whose characteristics depend on some features of a
high-dimensional input. If such a nonlinear mapping is so
complicated that it is difficult to represent it as a parametric
model, a possible way to tailor the mapping is to learn from a
large amount of input and output data.

A high-dimensional data set in practice has an intrinsic
low-dimensional structure, and so it is possible to reduce the
data dimensionality. The reduction techniques, such as the
linear and kernel principal component analyses, assume the
data to lie on an embedded linear or nonlinear manifold. Find-
ing a data manifold can, however, be computationally as in-
tensive as learning a nonlinear function. Compressed sensing
[1, 2, 3, 4, 5] provides us with efficient methods for compres-
sion and reconstruction of high-dimensional vectors. Com-
pression by random projection is a method of dimensionality
reduction suitable for learning a high-dimensional nonlinear
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mapping, because it can be performed without any analyses
on high-dimensional data or even matrix operations [6].

We show an outline of our framework for learning a non-
linear mapping based on the compressed sensing technique in
Section 2. A high-dimensional nonlinear mapping can be ap-
proximated by a single hidden layer feedforward neural net-
work (SLFN) and the reconstruction of the high-dimensional
output from a low-dimensional output of the SLFN. The SLFN
includes the random projection of the high-dimensional input.
Such an SLFN can be learned by a simple and efficient algo-
rithm called the extreme learning machine (ELM) [7, 8, 9].
In Section 3, we present a compressive ELM (CELM) algo-
rithm, which includes the random projection of both the input
and output to make the ELM scalable in dimensionality. We
confirm the scalability of the CELM in Section 4.

2. MACHINE LEARNING FOR
HIGH-DIMENSIONAL NONLINEAR MAPPING

2.1. Framework

Let X and Y be real vector spaces. Given the training data
set

T =
{
(x(j), y(j)) |x(j)∈X, y(j)∈Y, j∈{1, . . . , n}

}
, (1)

we consider the problem of learning a mapping function

f : X → Y. (2)

Assuming f to be a nonlinear mapping from the input space
X to the output space Y , this supervised machine learning
task is a nonlinear regression. There is a class of models
called the universal approximator [10, 11], such as the projec-
tion pursuit [12] and the feedforward neural networks (FNN),
which can approximate any continuous function with an arbi-
trarily small error.

In general, the lower the dimensionalities dx = dimX
and dy = dim Y are, and the smaller the number n of train-
ing data is, the lower the computational cost of learning the
mapping is. A natural idea is to reduce the dimensionalities
of the input and output spaces, X and Y , respectively to low-
dimensional spaces P and Q, and instead learn the mapping
h from P to Q.

h : P → Q (3)
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X Y
Compression ↓ ↓ Compression

P
h−→ Q

Fig. 1. Compression and learning of a mapping h. Instead
of learning f between the high-dimensional input and output
spaces, X and Y , consider to learn h between the compressed
(dimensionality-reduced) input and output spaces, P and Q.

X Y
Compression ↓ ↑ Reconstruction

P
h−→ Q

Fig. 2. Mapping from X to Y through h. The mapping from
X to Y is achieved by the compression (dimensionality re-
duction) from X to P , the learned mapping h from P to Q,
and reconstruction of Y from Q.

This idea is illustrated in Fig. 1. If it is possible to recon-
struct the high-dimensional output data y ∈ Y from the low-
dimensional output data q ∈ Q, the mapping f from X to Y
is computable through h as shown in Fig. 2. The compression
by the dimensionality reduction, therefore, needs to be com-
putationally more tractable than directly learning f , as well
as invertible to reconstruct the high-dimensional output data.

2.2. Compression and Reconstruction

Compressed sensing [1, 2, 3, 4, 5] is a technique for acquisi-
tion and reconstruction of a signal with a sparse model. Sup-
pose that the input and output data have the sparse models
described as

x(j) = Dxα(j) (4)

y(j) = Dyβ(j). (5)

Here, Dx ∈ Rdx×kx and Dy ∈ Rdy×ky are the dictionary
matrices, a small number of whose column vectors can syn-
thesize x(j) ∈ X and y(j) ∈ Y , respectively. The sparse vec-
tors α(j) ∈ Rkx and β(j) ∈ Rky , with nonzero components
||α(j)||0 ¿ kx and ||β(j)||0 ¿ ky , contain the coefficients of
the linear combinations for x(j) and y(j), respectively.

Let the compression of the input and output in Fig. 1 be
the linear measurement of x(j) and y(j) described as

p(j) = Rxx(j) (6)

q(j) = Ryy(j). (7)

If Rx ∈ Rdp×dx and Ry ∈ Rdq×dy are proper measurement
matrices with low coherence to the respective dictionaries,
one can find the sparse vector α(j) and β(j) for p(j) and q(j),
and reconstruct x(j) and y(j) by Eqs. (4) and (5) [4, 13].
The random matrix is in particular known to be a universal

Algorithm 1 Generating random code: C = CODE(d)
Input: d: ambient dimensionality;
Output: C = {ŵ, s}: a random code;
1 generate s := [s1, . . . , sd]> where si (i = 1, . . . , d)

are random variable values with mean zero and deviation
one, or random signs {+1,−1};

2 generate w := [w1, . . . , wd]> where wi (i = 1, . . . , d)
are i.i.d. random variable values with mean zero and de-
viation one;

3 ŵ := F [w]: fast Fourier transform (FFT) of w.

Algorithm 2 Efficient random projection: v = ERP(u, l, C)

Input: u ∈ Rd: a vector to be projected; l: dimensionality of
the target space; C = {ŵ, s}: a random code generated
by Algorithm 1;

Output: v ∈ Rl: random projection of u;
1 ξ := s.∗u: spectrum spreading with element-by-element

multiplication;
2 η := F−1

[
ŵ. ∗ F [ξ]∗

]
: circular convolution;

3 v := [η1, . . . , ηl]>: pick up l components.

measurement for signals obeying the sparse model with any
dictionary [2, 4]. Compression of the input x(j) ∈ X by the
random projection using a random matrix as Rx in Eq. (6)
requires O(dpdx) time and O(dpdx) space to generate, store,
and multiply the pseudo-random numbers. Fortunately, we
have developed an efficient algorithm of the random projec-
tion which requires only O(dx log dx) time and O(dx) space
[6]. So does for the compression of the output. The pro-
cedure of the efficient random projection is shown in Algo-
rithms 1 and 2. Our algorithm achieves the random projection
by spectrum spreading and circular convolution with a white
random vector. It has been proven that our algorithm satisfies
the Johnson-Lindenstrauss lemma [14].

3. EXTREME LEARNING MACHINE FOR
HIGH-DIMENSIONAL NONLINEAR MAPPING

3.1. ELM and SLFN

Extreme Learning Machine (ELM) [7, 8, 9] is a simple and
fast machine learning algorithm for single hidden layer feed-
forward neural networks (SLFNs). To map a s1-dimensional
input vector to a s3-dimensional output vector, an SLFN has
three layers: an input layer of s1 nodes and a bias node, a
middle layer of s2 nodes with activation functionality, and an
output layer of s3 nodes. Propagation from the input x to the
output y is expressed as

y = W(2)g

(
W(1)

[
1
x

])
, (8)

where W(1) ∈ R(s1+1)×s2 and W(2) ∈ Rs2×s3 are the matri-
ces of weights of links between the input layer and the middle
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layer, and between the middle layer and the output layer, re-
spectively. The activation function g works element-wise on
a vector as

g(z) = [g(z1), . . . , g(zs2)]
> ∈ Rs2 (9)

A common choice for the activation function is a sigmoidal
function:

g(z) =
1

1 + e−z
. (10)

Given a training data set T of the input and output pairs
of the mapping f , we want to find W(1) and W(2) of the
SLFN which approximates f . The ELM algorithm consists
of random projection and the least-squares solution. It has
been shown that W(1) can be a random matrix for an SLFN
to be a universal approximator if the activation function is in-
finitely differentiable [7, 8]. The SLFN training is therefore
simplified to finding the least-squares solution W(2) that min-
imizes the approximation errors between the n output training
data and the SLFN outputs. A sufficient number s2 of hidden
nodes ensures the universal approximation capability [15].

3.2. Compressive ELM

We employ random projection for the compression of both
the input and output in Fig. 1. Let us set the low-dimensional
mapping h in Eq. (3) to be the activation using g followed
by the linear mapping defined by the least-squares solution
W(2). The nonliner mapping from X to Q is then formed
as an SLFN, which can efficiently be learned by the ELM
algorithm. The low-dimensional input space P plays a role of
the middle layer of the SLFN.

Thus we have derived, as shown in Algorithm 3, a com-
pressive extreme learning machine (CELM) algorithm of ap-
proximating a high-dimensional nonlinear mapping as an SLFN.
It naturally includes the compressed sensing random mea-
surement of the high-dimensional input as the propagation
from the input layer to the middle layer. The propagation
from the middle layer to the output layer is optimized so that
the compressed input training data p(j) after the activation by
g approximate the compressed output training data q(j).

The CELM is extremely scalable in dimensionality be-
cause the compression of both the input and output by the
random projection is implemented by the efficient random
projection, as shown in Algorithms 1 and 2. No huge ran-
dom matrices have to be generated and stored. Instead, the
CELM returns the the random codes Cx and Cy . The com-
putational cost of the least-square solution to find the weight
matrix W(2) is also reduced due to the compression of the
output space.

The procedure for mapping x ∈ X to y ∈ Y is de-
scribed in Algorithm 4. It obtains the low-dimensional output
q of the learned SLFN, and follows reconstruction process
of the compressed sensing. Most of the sparse solvers for
compressed sensing require operations of signal synthesis and

Algorithm 3 Compressive ELM: {Cx,W(2), Cy} =
CELM(T , dp, dq)

Input: T =
{
(x(1), y(1)), . . . , (x(n), y(n))

}
: training data

set;
dp: dimensionality of the low-dimensional input space;
dq: dimensionality of the low-dimensional output space;

Output: Cx: random code for the input space; W(2) ∈
Rdq×dp : weight matrix between the hidden and output
layers; Cy: random code for the output space;

1 generate by Algorithm 1 the random codes:

Cx := {ŵx ∈ R(dx+1), sx ∈ R(dx+1)} = CODE(dx + 1)

Cy := {ŵy ∈ R(dy+1), sy ∈ R(dy+1)} = CODE(dy + 1)

for the input and output spaces of the respective dimen-
sionalities (dx + 1) and (dy + 1) (bias included);

2 for j = 1, . . . , n do
3 perform the random projection of the j-th input data

by Algorithm 2: p(j) := ERP([1, x(j)>]>, dp, Cx);
4 perform the random projection of the j-th output data

by Algorithm 2: q(j) := ERP([1, y(j)>]>, dq, Cy):
5 end for
6 construct the input matrix

P :=
[
p(1), . . . , p(n)

]
∈ Rdp×n;

7 apply an activation function g to every element of P to
obtain the output of the hidden layer:

H := g(P) ∈ Rdp×n; (11)

8 compute the Moore-Penrose inverse [16] of H as

H+ := VrK−1
r U>

r ∈ Rn×dp (12)

where Kr is the diagonal matrix with r = rank H
nonzero singular values, and Ur and Vr are respectively
the matrices of the left and right singular vectors corre-
sponding to the r nonzero singular values;

9 compute the weight matrix by linear regression as

W(2) :=
[
q(1), . . . , q(n)

]
H+ ∈ Rdq×dp . (13)

measurement, which correspond to the multiplication by Dy

and random projection in our framework, respectively. Their
adjoint operations are also required: multiplication by D>

y

and the transposed random matrix R>
y . We can implement

the operation adjoint to ERP in a similar fashion, although it
is not shown in this paper. It is also possible to make a com-
position of the operations as a compressed dictionary matrix
Θ = RyDy , efficiently by ERP. Its transpose Θ> = D>

y R>
y

can be used as the adjoint operations.
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Algorithm 4 Mapping: y = MAP(x, {Cx,W(2), Cy})
Input: x ∈ Rd: an input vector; {Cx,W(2), Cy}: a parame-

ter set of SLFN learned by Algorithm 3; Dy: a dictionary
matrix;

Output: y: an output vector;
1 set dq and dp to be the numbers of rows and columns of

W(2);
2 compute the low-dimensional output vector of the SLFN:

q := W(2)g
(
ERP([1,x>]>, dp, Cx)

)
;

3 find the sparse solution
β := arg min

b
||b||1 s. t. ||q − ERP(Dyb, dq, Cy)||2 < ε.

(14)
4 y := Dyβ.
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Fig. 3. Computation time and test errors. The open and filled
symbols correspond to the ELM and CELM results, respec-
tively. The squares indicate the computation time for training
with n=104 data with dimensionalities dx =dy =214 (using
Core i7 980X in MATLAB 2012b). The circles indicate the
relative errors.
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Fig. 4. Computation time with respect to dimensionality.
The open and filled squares indicate the computation time for
training with n=104 data by ELM and CELM, respectively.
The triangles indicate the computation time for efficient ran-
dom projection included in the CELM algorithm.

4. EXPERIMENTAL EVALUATION

We evaluate the scalability of the CELM algorithm using ar-
tificial data sets. We generate an artificial training data set of
n = 104 pairs of input vector x(j) and output vector y(j) =
f(x(j)) = x(j). ∗ x(j), where “.∗” indicates element-by-
element multiplication. Each input vector x(j) is an inverse
discrete cosine transform (DCT) of normally distributed ran-
dom sparse coefficients. To simulate a real output signal with
low frequency components, we randomly choose nnz = 10
frequencies for the nonzero coefficients from the 40 lowest
frequencies for each input vector. Since the nonlinear map-
ping f is set to compute the output as the squared waveform of
the input, the DCT of the output vector y(j) has nnz2+1=101
nonzero random DCT coefficients. We therefore define the
dictionary Dy as the DCT matrix. A test data set is also gen-
erated in the same way for the evaluation. We use the regular-
ized orthogonal matching pursuit [17] to solve Eq. (14).

Setting the dimensionality dx =dy =214, we first compare
computation time for training by the ELM and our CELM,
and evaluate test errors with respect to the number s2 = dp

of hidden nodes. We fix s3 = dq = 3,000 for the CELM.
The results shown in Fig. 3 indicate that a few thousand of
hidden nodes are required to approximate f for both the al-
gorithms, and CELM is faster for a larger number of hidden
nodes in this experiment. We also evaluate the scalability in
the input and output dimensionality up to dx = dy =218. We
set s2 = dp = 4,000 to sufficiently approximate f . Figure 4
shows the outperformance of the CELM. Dimensionality re-
duction accounts for most of the computational cost as the
dimensionality increases. While it is hard to run the ELM re-
quiring huge weight matrices of sizes of tens of gigabytes, our
CELM works with very high-dimensional data owing to ERP.

5. CONCLUDING REMARKS

Compressed sensing enables us to make it dimensionality-
scalable to learn a nonlinear mapping. Our random projec-
tion algorithm can efficiently perform the dimensionality re-
duction of training data. The CELM presented in this pa-
per learns an SLFN, which reduces the dimensionality of the
input and computes a low-dimensional output from which a
high-dimensional output is reconstructed on the basis of a
sparse model.

Further research should include detailed performance eval-
uation in possible applications such as nonlinear image filter-
ing, tracking, anomaly detection, solving large-scale inverse
problem, and so on. In such applications, our CELM should
be modified to support incremental learning.
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