
COLLABORATIVE REPRESENTATION, SPARSITY OR NONLINEARITY:
WHAT IS KEY TO DICTIONARY BASED CLASSIFICATION?

Xu Chen and Peter J. Ramadge

Department of Electrical Engineering
Princeton University, Princeton, NJ, USA

ABSTRACT
Recent studies have suggested that the critical aspect of
sparse representation-based classification (SRC) is collabora-
tive representation, rather than sparsity. This has given rise
to fast collaborative representation-based classification using
2-norm regularized least squares (CRC-RLS). This paper digs
deeper into the difference between SRC and CRC-RLS. We
show that linear coding schemes such as CRC-RLS share
a common pairwise boundary class B. Moreover, the cor-
responding pairwise classifiers can be realized by quadratic
SVMs. Using three datasets, we show empirically that col-
laborative representations are not always required, and that a
quadratic SVM has superior generalization over CRC-RLS,
with fast classification times. However, SRC exhibits the best
prediction accuracy. This leads us to posit that the nonlinear
coding of SRC is a key attribute.

Index Terms— Machine Learning, Sparse Representa-
tion, Collaborative Representation.

1. INTRODUCTION

Sparse representation with respect to an over-complete dictio-
nary has been of recent interest in a broad range of classifica-
tion applications. For example, Sparse Representation-based
Classification (SRC), first introduced for robust face recog-
nition [1], has since been used for speaker recognition [2],
tumor classification [3], image classification [4] and music
genre classification [5]. SRC computes a sparse coding for a
test sample x with respect to a dictionary of labelled training
samples. Based on this sparse coding, a class specific ap-
proximation x̃i to x is constructed for each class. Then x is
assigned to the class of least approximation residual.

Recent work [6, 7, 8, 9] has questioned the advantage
of sparsity in image classification. In [6] it is argued that
it is collaborative representation, not sparsity, that plays
the essential role in SRC. With this motivation, a new col-
laborative representation-based classification scheme using
`2-regularized least squares (CRC-RLS) has been proposed.
CRC-RLS has very competitive classification results in face
recognition, with significantly less complexity than SRC. In
[7, 8], this approach is further extended and several varia-
tions are developed. Similarly, [9] proposes a visual tracker

using non-sparse linear representations, which admit efficient
closed-form solutions without sacrificing accuracy.

We show that linear coding schemes such as CRC-RLS
share a common pairwise boundary class B, and that these
pairwise boundaries can be realized by quadratic SVMs. Us-
ing a synthetic dataset and two real datasets, we demonstrate
empirically that quadratic SVMs can robustly learn better
boundaries than CRC-RLS and that collaborative representa-
tions are not always required.

In §2 we review SRC and CRC-RLS. In §3 we study clas-
sification based on linear codings and use a simple synthetic
example to show the limitations of this approach and to high-
light alternatives. In §4 we give experimental results compar-
ing SRC and CRC-RLS on the synthetic problem and on two
standard datasets. We draw our conclusions in §5.

2. BACKGROUND

We first review the basic aspects of SRC [1] and CRC-RLS
[6]. Let the columns of Di = [di,1, . . . , di,pi

] ∈ Rn×pi

contain unit norm feature vectors (codewords or atoms)
drawn from the i-th class. Form the joint dictionary D =
[D1, D2, ..., Dc] ∈ Rn×p. SRC and CRC-RLS use this dic-
tionary to perform multi-class classification as follows. One
first solves a regularized least squares (RLS) problem to
obtain a coding of unit norm x ∈ Rn with respect to D:

arg minwi∈Rpi
1/2‖x−

∑c
i=1Diwi‖22 +λ

∑c
i=1 f(wi), (1)

where for SRC, f(wi) = ‖wi‖1, and for CRC-RLS, f(wi) =
‖wi‖22. Each wi incurs a regularization cost f(wi), but the
least squares cost results from a cooperative effort across the
classes. This is collaborative representation.

The solution w̃ of (1) represents x as a linear combination
of the columns of D. For SRC, w̃ = h(x) is sparse and is
a nonlinear function of x, but solving (1) can be time con-
suming for large problems. Fast solvers, e.g., [10, 11, 12],
have been proposed, and dictionary screening, e.g., [13, 14,
15, 16], can also help. In contrast, for `2 regularization, the
solution of (1) is linear in x and given in closed form by
w̃ = (DTD + λI)−1DTx.

Next, the above codings are used to form class-specific
approximations x̃i = Diw̃i to x, with residuals x − x̃i.
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Here w̃i = Eiw̃ ∈ Rpi extracts the entries in w̃ associ-
ated with class i. Finally, SRC selects the class of least
residual: arg mini si(x) = ‖x−Diw̃i‖22. CRC-RLS is sim-
ilar, except for instance specific scaling of the residual [6]:
arg mini si(x) = ‖x−Diw̃i‖22/‖w̃i‖22.

3. COLLABORATION, SPARSITY, NONLINEARITY

As a contrast to collaborative representation, consider mov-
ing the sum in (1) within ‖...‖22, outside the squared norm.
In the “uncollaborative” problem that results, each class in-
dependently seeks its own representation w̃i of x using its
dictionary Di. For `1 (resp. `2) regularization, we call this
coding method subspace-SRC (S-SRC) (resp. subspace-RLS
(S-RLS)). The codings of S-RLS are also linear in x.

We now consider what we lose, if anything, by moving
from SRC to linear coding schemes such as CRC-RLS. We
begin with classifiers that use linear codings w̃j = Pjx with-
out residual scaling. The class specific approximations of x
with respect to D are x̃j = DjPjx = Ljx, with residual
rj(x) = (I − Lj)x. Let sj(x) = ‖rj(x)‖22 = xTQjx, where
Qj = (I − Lj)

T (I − Lj) is symmetric PSD (positive semi-
definite). Then the classification of x is arg minj sj(x) =
xTQjx. Hence classification between classes j and k is de-
termined by the sign of the quadratic form djk(x) = xT (Qj−
Qk)x, with x classified as class k if djk(x) ≥ 0.

Write Qjk = Qj −Qk = V ΣV T with V orthogonal and
Σ = diag(σ) ∈ Rn×n. Let U (resp. U⊥) denote the subspace
spanned by the eigenvectors with σi ≥ 0 (resp. σi < 0). A
classification boundary divides Rn into classification regions
for class k (containing U) and class j (containing U⊥). Write
x = V b. Then djk(x) = bTV T (V ΣV T )V b =

∑n
i=1 σib

2
i .

So the boundary is determined by the quadratic:
∑

i σib
2
i =

0. The solutions of this equation are invariant under scaling
and hence form a (double-sided) cone in Rn. For unit norm
x, the decision boundary is the intersection of this cone with
the unit sphere. Hence, modulo V , the set of boundaries is:

B = {b :
∑n

j=1 σjb
2
j = 0,

∑n
j=1 b

2
j = 1}. (2)

For b ∈ B, b(2) = [b2j ] lies on a linear manifold in Rn of di-
mension n − 2. The warping of this manifold resulting from
the component-wise (positive) square root also has dimension
n − 2. The square root operator forms 2n manifold sections
depending on the sign given to each root. These sections join
smoothly on the plane where the corresponding variable is
zero. So the surface of the sphere is divided into 2 classifica-
tion regions by (n− 2)-dimensional, quadratic manifolds. In
summary, linear coding results in pairwise classification using
quadratic boundaries in B (modulo V ). Fixing σ determines
the boundary shape, and V “rotates” it to the desired location.

For c classes, the decision region for class k is the inter-
section of c− 1 pairwise regions. But if we focus on the pair-
wise boundaries, we can make some interesting connections.

v1,�1 > 0 v2,�2 < 0

Fig. 1. Example 1. Decision regions of unscaled CRC-RLS for
n = 3, σ1 > 0, σ2 < 0, and σ3 < 0 (left) and σ3 = 0 (right).

Write djk(x) = xTQjkx = qTjkφ(x), where qjk ∈ Rm is a
weight vector and φ(x) = (x21, . . . , x

2
n, x1x2, . . . xn−1xn)T ∈

Rm, with m = n(n+1)/2. This shows that djk(x) is a linear
classifier in Rm under the data embedding φ. Moreover, we
can learn qjk, and hence Qjk, using a SVM with quadratic
kernel (<x, y>)2. This quadratic SVM (Q-SVM) has VC
dimension m + 1, and classifies via sign(sTφ(x) + γ). If
we constrain γ = 0, it yields the required set of quadratic
boundaries. Hence this boundary set has VC dimension m.

Example 1: For n = 2, assume that Qjk has σ1 > 0 and
σ2 < 0. By (2), the boundary consists of four points, with en-
tries b1 = ±

√
−σ2/(σ1 − σ2) and b2 = ±

√
σ1/(σ1 − σ2),

that divide the 1-sphere into two decision regions. The eigen-
vector for σ1 > 0 is centered on the class k region, and for
σ2 < 0 on the class j region.

For n = 3, assume Qjk has σ1 > 0 and σ2, σ3 < 0. The
positive eigenspace U (Fig. 1(left)) is centered on the class k
decision region, and the negative eigenspace U⊥ (red tinted
disk) on the class j decision region. The boundary has eight
sections; four link to form the boundary curve in dark blue in
the foreground of the figure. The other four form a match-
ing curve in the opposite hemisphere. The boundary cone is
shown as the cyan surface. The situation of one negative and
two positive eigenvalues is similar. If one eigenvalue is zero,
say σ1 > 0, σ2 < 0 and σ3 = 0, the boundary joins at the
poles (Fig. 1(right)) to form two boundary circles.

Example 2: Consider data on the unit sphere in R3 with x =
cos θ cosα, y = cos θ sinα, z = sin θ. For class 1, (α, θ)
is uniformly distributed in ([−40°,−20°]

⋃
[20°, 40°]) ×

[−15°, 15°], and for class 2, uniformly in [−20°, 20°] ×
[β−15°, β+15°]. Here β controls the relative position of the
classes. Training sets consisting of 400 samples/class are gen-
erated for β = 0° and 15°. These datasets are (almost surely)
separable by B using two great circles with α? = ±20°. This
boundary is achieved by σ = (σ1,−σ2, 0) with σ1, σ2 > 0
and σ2/σ1 = tan2 α?, and V = I . For each dataset, we train
S-RLS, unscaled CRC-RLS and Q-SVM using values of λ (or
C for SVM) selected for each classifier and each value of β
by cross-validation. The resulting quadratic decision bound-
aries and training data classifications are shown in Fig. 2. For
S-RLS and unscaled CRC-RLS and both values of β, d12(x)
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Subspace − RLS, λ= 250 Subspace − RLS, λ= 288

Unscaled CRC − RLS, λ= 24 Unscaled CRC − RLS, λ= 144

CRC − RLS, λ= 95 CRC − RLS, λ= 218

Fig. 2. Example 2. Boundaries and training point classifications
from: S-RLS (top), unscaled CRC-RLS (second), CRC-RLS (third)
and Q-SVM (bottom). KEY:- Left: β = 0°, Right: β = 15°, class
1: orange-�, class 2: blue-o; misclassified points: red. The decision
boundary of unscaled CRC-RLS is shown on the CRC-RLS plot.

has one positive eigenvalue. The classifiers easily separate
the classes when β > 30° (not shown). As β decreases and
class 2 moves between class 1, S-RLS and unscaled CRC-
RLS struggle to learn a good boundary until near β = 0°,
where the separating boundary is “discovered”. In contrast,
Q-SVM learns the separating boundary in both cases (fourth
row). The third row of Fig. 2, shows the results for CRC-RLS
and the boundary curve for unscaled CRC-RLS. There are
local changes in classification, but the CRC-RLS decisions
are largely determined by the linear coding.

4. EXPERIMENTAL RESULTS

We now investigate the generalization performance of SRC,
CRC-RLS, the subspace variants, and Q-SVM on the syn-
thetic problem in Example 2 and two real datasets. In the
following figures, error bars indicate ±standard error.

Fig. 3 shows the generalization performance on the syn-
thetic dataset of the tested classifiers as class 2 slides from
β = 0° to β = 30°. Test accuracy is shown for training sets
with N = 20 and N = 200 codewords/class. For each classi-
fier, λ is selected for each value of β and N via leave-one-out
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Fig. 3. Generalization results for Example 2. Test performance of
six cross-validated classifers as class 2 slides from β = 0° to 30° for
N = 20 training samples/class (left) and N = 200 (right).

cross validation on the training set. Q-SVM was implemented
and cross-validated using LIBSVM [17]. LIBSVM does not
have an option to constrain γ = 0. So the tested Q-SVM
has VC dimension m+ 1. A comparison with the results ob-
tained using SVMlight [18], with γ = 0, indicated equivalent
performance.

Here are the salient points to note: 1) The accuracy of
cross-validated CRC-RLS falls well below that of S-SRC,
SRC and Q-SVM. Only when β > 30° and the classes are
linearly separable, can CRC-RLS achieve competitive accu-
racy. 2) Residual scaling in CRC-RLS has a significant effect,
but not enough to change the overall trend of performance.
3) Surprisingly, the “uncollaborative” classifiers (S-RLS and
S-SRC) have the same, or better, performance as the “collab-
orative” counterparts. So collaborative representation is not
critical for this problem. 4) Q-SVM has similar accuracy to
SRC and S-SRC. So if a strong learning method is used, then
(as expected) a quadratic classifier suffices for accurate classi-
fication on these datasets. 5) For N = 200, CRC-RLS peaks
in accuracy around β = 0° where it has approximated the
separating boundary (see Fig. 2). However, for N = 20, this
peak disappears, indicating that on the smaller training set
CRC-RLS failed to identify the boundary. In contrast, while
the performance of Q-SVM also decreased as β approached
0, at all values of β it is competitive with SRC and S-SRC.

The MNIST dataset consists of 28×28 hand-written digit
images [19]). From 60, 000 training images, we randomly
sampled balanced sets of 2, 500 training images and 500 test-
ing images and report average results over 5 random selec-
tions. Fig. 4 shows test accuracy plotted versus λ, for the
tested classifiers. Multi-class Q-SVM is cross-validated over
different parameters and hence is not shown in the plot. How-
ever it is included in the table below the plots, where we list
the best accuracy and test time of each method. We place the
average testing time of Q-SVM in quotes since testing was
done using LIBSVM, while other testing times are based on
MATLAB code. LIBSVM implements multi-class SVM us-
ing the one-vs-one method. Hsu et al. [20] indicate this has
comparable performance with the one-vs-rest method. The
salient points to note include: SRC is more accurate than
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Time (ms) 14 36 7 2 “4”

Fig. 4. Results for MNIST. Top: Classification accuracy vs λ for
the tested methods. Bottom: Classification accuracy and average test
time at the λ value where each classifier achieves its best accuracy.

CRC-RLS, but at the cost of a longer test time; the “uncollab-
orative” classifiers subspace-SRC and subspace-RLS again
have a competitive accuracy with the collaborative counter-
parts; and multi-class Q-SVM outperforms CRC-RLS.

The GTZAN dataset consists of 100 music clips (30 sec,
sampled at 22,050 Hz) for each of ten genres of music [21].
Clips are divided into 3-second, 50% overlap, texture win-
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Acc (%) SRC S-SRC CRC S-RLS Q-SVM
Clip 83.6 84.2 68.4 72.2 80.8
TW 77.9 78.1 63.8 68.0 73.2

Time (s) SRC S-SRC CRC S-RLS Q-SVM
Clip 1.23 2.89 0.21 0.08 “0.07”
TW 0.06 0.14 0.01 0.004 “0.003”

Fig. 5. Results for music genre classification. Top: Accuracy of
the tested methods versus λ. Left: Texture-window accuracy; Right:
Clip accuracy. Bottom: The classification accuracy and average test
time at the λ values where each classifier achieves its best accuracy.

dows (TW) with each TW represented by a 1st-order scatter-
ing vector x ∈ R199 [22]. We randomly select a dictionary
of 18,000 TWs and generate test vectors from the remain-
ing 2,000 TWs. The results (Fig. 5) show that for CRC-RLS
residual scaling yields a significant improvement. However,
SRC still has an average 15% accuracy advantage over CRC-
RLS, both in TW and clip classification. Although not as ac-
curate as SRC, multi-class Q-SVM also does well. S-SRC
and S-RLS are again at least as good as the corresponding
counterparts SRC and CRC-RLS.

5. DISCUSSION AND CONCLUSION

We examined how linear coding methods such as CRC-RLS
perform beyond the domain of face recognition. We have
shown that linear coding classifiers of the SRC-form share a
pairwise quadratic boundary class and that these boundaries
can be realized by a SVM with kernel K(x, y) = (<x, y>)2.
Based on these insights, we performed three experiments
leading to the following conclusions.
Multi-class Q-SVM is a viable alternative to CRC-RLS.
Despite the separability of the synthetic problem by a quadratic
boundary, S-RLS and CRC-RLS failed to learn a separating
boundary over a large range of β. This results in the trough
and peak in CRC-RLS accuracy in Fig. 3(right). This is
exacerbated for the smaller training set (Fig. 3(left)). In con-
trast, Q-SVM had significantly better accuracy. Multi-class
Q-SVM also outperformed CRC-RLS and S-RLS on the two
real datasets while exhibiting competitive testing times. How
this scales with c remains to be investigated.
Collaborative representation is not always necessary. For
our datasets, well-tuned S-SRC (resp. S-RLS) was as accu-
rate as SRC (resp. CRC-RLS). The collaborative represen-
tation of SRC did not improve accuracy, but it did save test-
ing time compared with S-SRC. However, the performance of
these classifiers may differ in robustness to tuning errors and
to noise and other corruption in the test samples.
SRC & multi-class Q-SVM are the “right” benchmarks.
SRC and the Q-SVM were on par for the synthetic dataset,
and Q-SVM was competitive on the real datasets. The strong
learning ability exhibited by Q-SVM and the small testing
times, make it a better competitor to SRC. A one-vs-rest ver-
sion of Q-SVM scales linearly with c, and deserves attention.
Sparsity induced nonlinearity is key to SRC. SRC (resp.
S-SRC) exhibited higher accuracy than the linear coding
method CRC-RLS (resp. S-RLS). Others have reported simi-
lar findings [8]. The most important difference between SRC,
CRC-RLS and Q-SVM is that SRC uses a sparsity induced,
nonlinear coding of test samples. We posit that rather than
just sparsity or collaborative representation, it is this attribute
that is SRC’s key characteristic. It gives SRC the potential
to “localize” a testing sample on a nonlinear manifold of
labelled prior examples.
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