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ABSTRACT

Representing music information using audio codewords has
led to state-of-the-art performance on various music classi-
fication benchmarks. Comparing to conventional audio de-
scriptors, audio words offer greater flexibility in capturing the
nuance of music signals, in that each codeword can be viewed
as a quantization of the music universe and that the quantiza-
tion goes finer as the size of the dictionary (i.e., audio code-
book) increases. In practice, however, the high computational
cost of codeword assignment might discourage the use of a
large dictionary. This paper presents two modifications of
a LASSO screening technique developed in the compressive
sensing field to speed up the codeword assignment process.
The first modification exploits the repetitive nature of music
signals, whereas the second one relaxes a screening constraint
that is specific to reconstruction but not for classification. Our
experiments show that the proposed method enables the use
of a dictionary of 10,000 codewords with runtime close to the
case of using a dictionary of 1,000 codewords. Moreover, us-
ing the larger dictionary significantly improves the mean av-
erage precision (MAP) from 0.219 to 0.246 for tagging thou-
sands of tracks with 147 possible genre tags.

Index Terms— Sparse coding, feature learning, LASSO
screening, music information retrieval, genre classification

1. INTRODUCTION

Feature learning is a burgeoning research topic in the broad
signal processing and machine learning communities [1]. For
music information retrieval (MIR), representing music infor-
mation as a term-document structure comprising of elemen-
tary audio codewords has been found competitive or even su-
perior to conventional, hand-crafted audio features [2–5].

Given a dictionary (audio codebook) D ∈ Rm×k, which
is a finite collection of k codewords dj ∈ Rm, j = 1, . . . , k,
an input acoustic feature vector x ∈ Rm can be replaced by a
linear combination of the codewords, leading to the so-called
audio word (AW), or bag-of-frames representation [5–10].
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(a) λs=3.5λ0 (b) k = 10, 000

Fig. 1. Time cost of performing LARS-LASSO sparse coding
[12] with (red line with circles) or without (blue dashed line)
the proposed modified LASSO screening (a) for fixed λs =
3.5λ0 and varying dictionary size k (from 250 to 10,000) and
(b) fixed k=10,000 and varying λs (cf. Section 4.1).

Specifically, the AW representation is a k-dimensional vec-
tor α ∈ Rk computed by a codeword assignment function
α = f(D,x). For the case of k � m, it has been shown
that the following sparse coding (SC) formulation empirically
performs better than competing methods such as vector quan-
tization (VQ) [6, 11].

α∗ = fSC(D,x, λc) = argmin
α

1
2
‖x−Dα‖22 +λc‖α‖1 . (1)

This formulation leads to codes that are sparse (i.e., small
‖α‖1) but are sufficient to reconstruct or to interpret the in-
put signal (i.e., small ‖x−Dα‖22); the parameter λc controls
the balance between these two terms. This problem can be
efficiently solved by for example the least angle regression
(LARS)-LASSO algorithm [12] given a dictionary of mod-
erate size. Because the resulting AW representation α∗ is
high-dimensional (i.e., large k) but sparse, using linear sup-
port vector machine (SVM) [13] for training audio classifiers
has been found effective and efficient [9, 11].

The dictionary D is usually generated from a possibly un-
labeled music collection X in off-line [4, 5]. As each code-
word dj represents a sample of the acoustic space U ⊆ Rm,
theoretically D can represent every nuance of music signals
if 1) X is representative of the music universe U and 2) suf-
ficiently large number of codewords are drawn from X . The
first condition can be approached by generating the dictio-
nary from for example the million song dataset [2, 14, 15], a
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publicly-available collection of audio features for a million
contemporary popular music tracks. To meet the second con-
dition, a straightforward approach is to increase the vocabu-
lary size k by drawing more samples from X . In practice,
however, the approach is not feasible as SC using large vo-
cabulary can be exceedingly time consuming [16].

The dotted line in Fig. 1(a) shows the time cost of encod-
ing the 12-bin chromagram of a song (i.e., m = 12) using
LARS-LASSO on a regular PC. It can be found that the run-
time grows linearly along with k, and that it costs almost 6
seconds for the case of k = 10, 000. Better efficiency is de-
sirable for large-scale or mobile applications.

In this paper, we show that we can reduce the runtime
remarkably (as shown by the solid line in Fig. 1(a)) with a
modified LASSO screening technique without compromising
the effectiveness of the AW representation. This amounts to
eight-fold speed increase for k = 10, 000. LASSO screening
is a novel technique proposed in the compressive sensing field
to filter redundant codewords for a given input without affect-
ing the existence of an optimal solution [16–18]. We show
that the existing screening techniques are less applicable to
music signal processing and propose two modifications. Our
evaluation shows that the proposed modifications effectively
speed up SC and improve the accuracy of an AW-based music
genre classification system.

Accelerating AW-based music classification has been
studied recently. For example, Yeh et al. [19] employed di-
mension reduction techniques to reduce m and multi-frame or
temporal sampling techniques to reduce the number of frames
to be encoded for an audio signal. Yang [20] investigated the
use of randomized clustering forest (RCF) to replace SC.
On the other hand, for deep learning techniques distributed
architecture is usually employed [2, 4, 21]. The present work
differs from the prior arts in the following aspects. First,
we focus on a system that can be built on a single machine.
Second, the proposed method is designed specifically for SC,
which usually leads to more effective AW representation than
competing methods such as RCF or VQ [11, 20]. Lastly, this
work represents an early attempt that applies screening to
improve the efficiency of SC with a large-scale dictionary.
In contrast, the dictionary size k used in previous work is
usually less than 2,000 [4, 5, 10, 15].

2. MODIFIED LASSO SCREENING

2.1. LASSO screening

The principle idea of LASSO screening is to remove code-
words in D that are unlikely to be useful for encoding a spe-
cific signal x, before actually performing SC [16–18]. From
the dual form of Eq. 1,

θ∗ = arg max
θ

1
2
‖x‖22 −

λ2
c

2
‖θ −

x
λc
‖22 ,

s.t . |θT dj | ≤ 1 ∀j = 1, . . . , k ,

(2)

Algorithm 1 Modified LASSO screening based SC

Input: λc; λs; X ∈ Rm×n := [x1, . . . ,xn];
Output: A ∈ Rk×n := [α1, . . . , αn];

1: Ω← ∅;
2: for t = 1 to n do
3: wt ← screening(D,xt, λs);
4: Ω← Ω ∪wt;
5: end for
6: for t = 1 to n do
7: αt ← fSC(Ω,xt, λc);
8: end for

rules for irrelevant codeword removal can be discovered by
exploring the relation between the dual variable θ and the pri-
mal variable α. Given that the input x and each dj are nor-
malized to unit energy (i.e., xT x = 1), Xiang et al. deduced
a method called the “sphere test–3” to select codewords from
D for encoding x [16,17]. Specifically, the test calculates the
xT dj , the correlation between the input and a codeword, and
removes dj if the following inequality holds,

|xT dj−(λmax−λs)d
T
∗ dj | < λs

(

1−
√

λ−2
max − 1

(
λmax

λs
− 1

))

,

(3)
where λmax ≡ maxj |xT dj | is the largest absolute correla-
tion between the input and the codewords, d∗ ∈ {±dj}

k
j=1 is

the codeword that leads to λmax, and λs ≤ λmax is a param-
eter. After applying the above test to all the codewords, we
obtain a dictionary subset w ∈ Rm×k′

, k′ ≤ k, for x,

w = screening(D,x, λs) . (4)

It has been proved that when λs = λc the screening function
will not affect the optimal solution of SC [16].

In practice, different w are used for different inputs. To
make the dimension of the coding result consistent, we fill
zeros to the entries corresponding to removed codewords to
increase the dimension from k′ to k.

2.2. Modifications

For a song with n frames, we have to perform SC for each
frame xt individually. In consequence, we would also have
to use LASSO screening n times to compute wt for each xt.
However, it might not be necessary to encode each xt with
possibly a nearly totally different dictionary, given the repe-
tition nature of music (i.e., the frames might be similar with
one another). In addition, using different subsets of D to en-
code a song may suffer from either extra memory transfer or
memory discontinuity problems. Our pilot study shows that
the extra cost in memory transfer can be an important issue —
we compared runtime of SC without screening and SC with
any of the existing screening techniques [16,17] and found no
acceleration but severe de-acceleration in many cases.
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Fig. 2. System diagram of the proposed AW-based system.

To address this problem, we propose to use only one song-
level dictionary Ω for each song, using the union of wt as the
dictionary. As the pseudo code in Algorithm 1 shows, two
passes through all the n frames are needed. The first pass
accumulates the relevant codewords to obtain the song-level
union Ω ⊆ D. The second pass uses Ω to encode each xt by
SC. No memory transfer is needed as the dictionary is shared.

The second modification we made is to relax the con-
straint λs = λc. Such a constraint is needed for minimiz-
ing the reconstruction error ‖x − Dα‖22, which is essential
for compressive sensing applications. However, for classifi-
cation applications, we are more concerned with the ability of
the coding result α in representing the acoustic quality of x,
so perfect reconstruction might not be needed. Moreover, the
constraint would lead to low rejection ratio (i.e., only a few
codewords would be removed) [18] because the value of λc is
usually small (e.g., the classic λ0 = 1/

√
min(m, k) [22]) in

SC. From the Fig. 2(c) of [16] we also see that the speed up
brought up by screening is limited when λs is small.

As preserving the existence of the optimal solution might
not be important for classification, we propose to use different
values for λs and λc, which effectively breaks the connection
of the primal and dual forms of Eq. 1. In this way, higher
rejection ratio (and thus more efficient SC process) can be
obtained by using a larger value for λs.

3. EXPERIMENT SETUP & SYSTEM OVERVIEW

Two datasets were utilized in the performance study: the mil-
lion song dataset (MSD) [14] for dictionary generation and
the CAL10k dataset [23] for evaluating the accuracy of AW-
based music classification. The CAL10k dataset contains the
annotation over 147 genre tags for 10,870 songs made by ex-
pert musicologists from Pandora (http://www.pandora.com).

For the low-level feature representation x, we used the 12-
D timbre descriptors (ENT) and 12-D pitch descriptors (ENP)

Table 1. The rejection ratio of codeword screening with or
without (w/o) song-level union and the resulting speed up
comparing to non-screening sparse coding

k λs
rejection ratio (%) speed up factor
w/o union union w/o union union

10,000

λ0 38.79 0.00 0.03x 0.88x
2λ0 88.38 1.11 0.19x 0.83x
3λ0 99.63 40.14 2.60x 1.63x

3.1λ0 99.80 51.90 3.21x 2.02x
3.2λ0 99.91 65.73 3.61x 2.99x
3.3λ0 99.96 80.29 3.91x 4.82x
3.4λ0 99.99 91.06 4.00x 7.27x
3.5λ0 99.9999 92.26 4.06x 8.03x

computed by the EchoNest API (http://developer.echonest.com).
ENT describes the timbre characteristics of the magnitude
spectrogram, whereas ENP is chroma-like [23]. The features
of a song are not in the frame-level but in the segment-level
computed by the EchoNest API, where each segment corre-
sponds to an acoustically homogenous fragment with multi-
ple frames. In consequence, LARS-LASSO was employed to
encode the segment-level features.

We respectively generated two dictionaries for ENT and
ENP by using the “exemplar-based” approach, randomly se-
lecting one segment-level feature vector from k random songs
of MSD and considering the union of the vectors as a dictio-
nary of size k. The same k is used for timbre and pitch. This
approach bypasses the need of using dictionary learning algo-
rithms [1, 22, 24], which is not the focus of this paper. More-
over, exemplar-based dictionary has been found effective for
music genre classification [20, 25].

For classification, we computed αENT
t ∈ Rk and αENP

t ∈
Rk for each segment and used the concatenation α̂t =
[αENT

t ; αENP
t ] ∈ R2k as the final segment-level feature. To

obtain the song-level representation, which is used as in-
put to SVM, we performed sum-pooling over a song by
αpool =

∑n
t=1 α̂t. In addition, L1 and square-root power nor-

malization were applied to αpool for better performance [5].
Fig. 2 depicts the diagram of the proposed system. In our

implementation, we cast the multilabel tagging problem into
binary classification problems and used LIBLINEAR [13] for
classifier training and prediction. The SVM parameter C was
fixed to 8 throughout the experiments.

4. RESULT

4.1. Efficiency of SC with modified LASSO screening

We first present a preliminary efficiency evaluation of SC with
or without screening, using a fixed λc = λ0 = 1/

√
12 [22]

and varying λs and k, for encoding a song randomly selected
from CAL10k. On average, each song in CAL10k has 840
segments, so we have to perform nearly a thousand SC (and
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Table 2. Accuracy of genre tagging for SC features without (w/o) or with the proposed screening versus baseline methods

method
dictionary rejection effective AUC MAP 10-Prec R-Prec

size ratio size w/o with w/o with w/o with w/o with
24 11% 21 0.856 0.853 0.179 0.176 0.232 0.228 0.193 0.189
48 21% 38 0.859 0.852 0.205 0.195 0.268 0.254 0.219 0.209

linear SVM 96 33% 65 0.864 0.855 0.218 0.199 0.281 0.265 0.228 0.216
using the 128 39% 78 0.865 0.852 0.220 0.201 0.285 0.266 0.234 0.213
screened SC 250 51% 123 0.866 0.851 0.227 0.204 0.293 0.262 0.243 0.220
(λs=3.5λ0) 1000 75% 250 0.865 0.852 0.235 0.219 0.299 0.291 0.247 0.236

4000 90% 403 0.868 0.851 0.256 0.242 0.326 0.313 0.270 0.256
10000 95% 505 0.868 0.853 0.265 0.246 0.337 0.319 0.276 0.260

random guess [23] 0.501 — 0.018 — 0.015 — 0.015 —
linear SVM using ENT and ENP 0.757 — 0.070 — 0.115 — 0.092 —
‘fastest’ setting using SC [19] 0.789 — 0.122 — 0.164 — 0.140 —
‘most accurate’ setting using SC [19] 0.854 — 0.202 — 0.253 — 0.214 —
‘GMM’ using ‘ENT+Δ’ [23] 0.887 — 0.211 — 0.266 — 0.224 —

screening) for a song. Fig. 1(a) clearly shows that the pro-
posed LASSO screening (with λs=3.5λ0) greatly reduces the
runtime for SC; the speed up gets more pronounced as k in-
creases. This result shows that screening is important for a
large-scale dictionary. On the other hand, Fig. 1(b) shows that
LASSO screening is effective only when sufficiently large λs

is used; if the original screening technique is applied (i.e., set-
ting λs = λ0), there is no speed up.

Table 1 shows how song-level fusion affects the efficiency.
The following three important observations are made. First,
the conventional LASSO screening (i.e., λs = λ0 and without
union) does not speed up but reduce the speed by a factor of
0.03, comparing to the runtime of SC without any screening.
Second, higher λs leads to more speed up, as expected. Third,
song-level union boosts the efficiency further. For λs = 3.5λ0

and k = 10, 000, the speed up attains 8.03x.
However, better efficiency in SC might come with lower

accuracy of the resulting AW representation. To study this, we
report the accuracy for genre tagging based on the proposed
SC features, using the extreme case λs = 3.5λ0.1

4.2. Accuracy of AW-based genre tagging

The accuracy of genre tagging for CAL10k was computed
by averaging the result of the five train/test splits specified
by Tingle et al. [23]. The following four measures are com-
puted: the area under the receiver operating characteristic
curve (AUC), mean average precision (MAP), 10-precision
(10-Prec) and R-precision (R-Prec), according to [23].

The upper half of Table 2 shows the performance of SC
features without (w/o) and with the modified LASSO screen-
ing as a function of dictionary size k. It can be found that bet-
ter accuracy is obtained as k increases, as expected. The per-
formance improvement is pronounced for MAP, 10-Prec and

1In effect this sets λs = 1 as 3.5/
√

12 exceeds 1, the maximal possible
value for λmax. A prerequisite of Eq. 3 is λs ≤ λmax [16].

R-Prec. This result supports our interest in using a large-scale
dictionary. From Table 2, we also see that screening does
not affect the accuracy much. Although slightly better accu-
racy can be obtained without screening, the modified LASSO
screening does not trade much accuracy for efficiency.

The lower half of Table 2 shows the result of two baseline
methods (a random baseline and linear SVM using the con-
catenated ENT and ENP features without SC) and three exist-
ing methods [19,23] — the first two existing methods [19] ap-
plied SC on the raw magnitude spectrum (instead of EchoNest
features) and employed dimension reduction and multi-frame
representation, whereas the last one [23] used Gaussian Mix-
ture Model (GMM) to model the 36-D ‘ENT+Δ’ feature with
first- and second-order temporal derivatives. The dictionary
size k for SC was set to 1,024 in [19] due to the computa-
tional cost of SC. We can find that the proposed SC features
are competitive comparing with these prior arts. Remarkably
higher accuracy in 10-Prec and R-Prec is obtained.2

5. CONCLUSIONS

In this paper, we have presented an efficient and effective
sparse coding engine for MIR. It adds two modifications to
a LASSO screening method to enable the use of a large dic-
tionary, which in turn improves the ability of the codewords in
representing the fine details of music signals. The first mod-
ification (song-level union) exploits the repetitive nature of
music to reduce memory overhead, and the second one re-
laxes a constraint that is not required for classification. A
large-scale dictionary generated from the million song dataset
leads to state-of-the-art result in a genre tagging benchmark,
the CAL10k dataset. In addition, our study provides empirical
evidence showing that a larger dictionary is indeed favorable.

2Actually the comparison is not exactly fair as slightly different subsets of
CAL10k were employed in this work, [19] and [23]. For example, only 7,799
songs (whose audio previews are available online) were considered in [19].
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