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ABSTRACT
This paper presents a vocal timbre analysis method based on topic
modeling using latent Dirichlet allocation (LDA). Although many
works have focused on analyzing characteristics of singing voices,
none have dealt with “latent” characteristics (topics) of vocal timbre,
which are shared by multiple singing voices. In the work described
in this paper, we first automatically extracted vocal timbre features
from polyphonic musical audio signals including vocal sounds. The
extracted features were used as observed data, and mixing weights
of multiple topics were estimated by LDA. Finally, the semantics of
each topic were visualized by using a word-cloud-based approach.
Experimental results for a singer identification task using 36 songs
sung by 12 singers showed that our method achieved a mean re-
ciprocal rank of 0.86. We also proposed a method for estimating
cross-gender vocal timbre similarity by generating pitch-shifted
(frequency-warped) signals of every singing voice. Experimental re-
sults for a cross-gender singer retrieval task showed that our method
discovered interesting similar pitch-shifted singers.

Index Terms— vocal timbre, cross-gender similarity, music in-
formation retrieval, latent Dirichlet allocation, word cloud

1. INTRODUCTION

The vocal (singing voice) is an important element of music in vari-
ous musical genres, especially in popular music. Indeed, the vocal
timbre and singing style can influence people’s decision on which
songs to listen to. In fact, several music information retrieval (MIR)
systems based on vocal timbre similarity have been proposed [1–5].
When people listen to singing voices, they can feel that different vo-
cal timbres and singing styles share some factors that characterize
their timbres and styles. It is, however, not easy to define every fac-
tor even by singers themselves because such factors are latent. We
call these shared factors “latent topics”. The aim of this study is
to explore the latent topics of singing voices by deriving them from
many singing voices sung by different singers. The latent topics are
useful for MIR as well as singing analysis.

There are many reports of research on automatic estimation of
singing characteristics from audio signals: characteristics such as
voice category (e.g., soprano or alto) [6, 7], gender [8–10], age [10],
body size [10], race [10], vocal register [11], singing modeling (F0,
power, and spectral envelope) [12–19], breath sound [20,21], singing
skill [6,7,22–25], enthusiasm [26], F0 dynamics and musical genres
[27], and the language of the lyrics [28–31] have been previously
proposed. The above previous works, however, have not revealed
latent topics that are shared by different singing voices.

To explore shared latent topics of voice timbres or singing styles,
we propose a vocal timbre analysis method based on a topic model-
ing method called latent Dirichlet allocation (LDA) [32]. In LDA,
each singing voice is represented as a weighted mixture of multiple
topics shared by all the singing voices in our song database. The
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Fig. 1. Overview of topic modeling of singing voices: vocal timbre
similarity, cross-gender vocal timbre similarity, and topic visualiza-
tion by singer cloud.

mixing weights of LDA can be used to compute singing voice sim-
ilarity for MIR (Fig. 1, A©) and to visualize the semantics of each
topic by using a word-cloud approach (Fig. 1, B©).

Moreover, we also propose a method for estimating cross-
gender vocal timbre similarity (Fig. 1, C©). For this estimation,
pitch-shifted (frequency-warped) audio signals of all singing voices
are automatically generated (Fig. 1, D©). For instance, by shifting up
the pitch of a male singing voice, we are able to obtain a female-like
singing voice. By using such pitch-shifted singing voices as queries
for MIR based on the latent topics of singing voice timbres, we can
find interesting cross-gender pairs of similar singing voices.

The remainder of this paper is structured as follows. Section
2 describes the proposed vocal timbre analysis method and cross-
gender similarity estimation method. Section 3 describes two exper-
iments we used to evaluate the methods. Section 4 concludes the
paper by summarizing the key outcomes and discusses future work.

2. METHOD

This section describes a method of singing analysis by latent Dirich-
let allocation (LDA) [32], and a method for estimating cross-gender
vocal timbre similarity. We deal with vocal timbre features extracted
from polyphonic musical audio signals including vocal sounds.
The cross-gender similarity is computed after first generating pitch-
shifted (frequency-warped) signals of all the target songs.
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Fig. 2. Graphical representation of the latent Dirichlet allocation
(LDA). First the finite sets of mixing weights π of the multiple top-
ics and the unigram probabilitiesφ of the singing words are stochas-
tically generated according to Dirichlet prior distributions. Then one
ofK topics is stochastically selected as a latent variable zd,n accord-
ing to a multinomial distribution defined by π. Finally the singing
word xd,n is stochastically generated according to a multinomial
distribution defined by φ.

There are previous works related to latent analysis of music,
such as music retrieval based on LDA of lyrics and melodic fea-
tures [33], chord estimation based on LDA [34,35], combining doc-
ument and music spaces by latent semantic analysis [36], music rec-
ommendation by social tag and latent semantic analysis [37], and
music similarity based on the hierarchical Dirichlet process [38].
The self-organizing map (SOM) can be latent analysis, and SOM-
based music clustering has been proposed [39]. Futhermore, there
exist many research papers on acoustic analysis based on topic mod-
eling (see, for example [40–43]). There are, however, none that dealt
with singing features.

2.1. Feature extraction of vocal timbre

To extract vocal timbre features, we use modules of Songle [44],
our Web service for active music listening. We first use Goto’s
PreFEst [45] to estimate the F0 of the melody, and then LPMCC
(mel-cepstral coefficients of LPC spectrum) of vocal and ΔF0 are
estimated by using the F0 and are combined them as a feature vector
at each frame. Then reliable frames are selected as vocal by using
a vocal GMM and a non-vocal GMM (see [3]). Finally, all feature
vectors of the reliable frames are normalized by subtracting the mean
and dividing by the standard deviation.

2.2. Converting vocal timbre features to symbolic information
by using a k-means algorithm

LDA deals with symbolic information (e.g. text), not continuous fea-
ture values as described in subsection 2.1 This paper therefore pro-
pose that the vocal features are converted to symbolic time series by
using a k-means algorithm. We call these symbolic representations
of singing singing words.

2.3. LDA model formulation

The observed data we consider for LDA are D independent singing
voicesX = {X1, ...,XD} already converted to symbolic time se-
ries as described in 2.2. A singing voiceXd isNd symbolic time se-
riesXd = {xd,1, ...,xd,Nd}which are the reliable frames (see 2.1).
The size of the singing words vocabulary is equivalent to the number
of clusters of k-means algorithm (= V ), xd,n is a V -dimensional
“1-of-K” vector (a vector with one element containing a 1 and all
other elements containing a 0).

The latent variable of the observed singing voice Xd is Zd =
{zd,1, ..., zd,Nd}. The number of topics isK, so zd,n indicates aK-
dimensional 1-of-K vector. Hereafter, all latent variables of singing
voiceD are indicated Z = {Z1, ...,ZD}.

Figure 2 shows a graphical representation of the LDA model
used in this paper. The full joint distribution is given by

p(X,Z,π,φ) = p(X|Z,φ)p(Z|π)p(π)p(φ) (1)

where π indicates the mixing weights of the multiple topics (D of
the K-dimensional vector) and φ indicates the unigram probability
of each topic (K of the V -dimensional vector). The first two terms
are likelihood functions, the other two terms are prior distributions.
The likelihood functions themselves are defined as

p(X|Z,φ) =

D∏
d=1

Nd∏
n=1

V∏
v=1

(
K∏

k=1

φ
zd,n,k

k,v

)xd,n,v

, (2)

p(Z|π) =

D∏
d=1

Nd∏
n=1

V∏
v=1

π
zd,n,k

d,k . (3)

We then introduce conjugate priors as follows:

p(π) =
D∏

d=1

Dir(πd|α(0)) =
D∏

d=1

C(α(0))
K∏

k=1

πα(0)−1

d,k , (4)

p(φ) =

K∏
k=1

Dir(φk|β(0)) =

K∏
k=1

C(β(0))

V∏
v=1

φβ(0)−1

k,v , (5)

where p(π) and p(φ) are products of Dirichlet distributions. α(0)

and β(0) are hyperparameters; C(α(0)) and C(β(0)) are normaliza-
tion factors calculated as follows:

C(η) =
Γ(η̂)

Γ(η1) · · · Γ(η|η|) , η̂ =

|η|∑
i=1

ηi (6)

2.4. Singer identification by computing vocal timbre similarity

Similarity between two songs is defined in this paper as the inverse
of the symmetric Kullback-Leibler distance (KL2) between two dis-
tributions, as follows:

dKL2(πA||πB) =

K∑
k=1

πA(k) log
πA(k)

πB(k)

+

K∑
k=1

πB(k) log
πB(k)

πA(k)
, (7)

Here the mixing weights of a singing A is πA and the mixing
weights of a singing B is πB , and these are normalized to meet the
probability criterion.

K∑
k=1

πA(k) = 1,
K∑

k=1

πB(k) = 1 (8)

2.5. Topic visualization by using a word-cloud-based approach

The mixing weight of each song π is a D,K-dimensional vector
(D×K matrix) which means that “π shows the predominant topics
of each song d.” The mixing weights can be useful for singer identi-
fication and cross-gender similarity estimation as described above in
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Table 1. Singers of the 36 songs used in the experimental evaluation.

ID Singer name Gender # of songs
M1 ASIAN KUNG-FU GENERATION Male 3
M2 BUMP OF CHICKEN Male 3
M3 Fukuyama Masaharu Male 3
M4 GLAY Male 3
M5 Hikawa Kiyoshi Male 3
M6 Hirai Ken Male 3
F1 aiko Female 3
F2 JUDY AND MARY Female 3
F3 Hitoto Yo Female 3
F4 Tokyo Jihen Female 3
F5 Utada Hikaru Female 3
F6 Yaida Hitomi Female 3

this Section. However, it is difficult to explain of semantic of each
topic from the mixing weights.

This subsection considers the topic weights π as a K,D-
dimensional vector. This means that “π shows the predominant
songs for each topic k.” It is utilized to interpret the semantics of
each topic by showing a word cloud, which is one of word visu-
alization methods frequently used on the web. We call this word
cloud singer cloud. In the singer cloud, metadata of a singing (e.g.
a singer’s name or a song name) are visualized according to the
mixing weights. In this paper, predominant singers of each topic are
visualized with large size.

2.6. Cross-gender similarity by generating pitch-shifted signals

This paper describes a method for cross-gender similarity estima-
tion. Pitch-shifted signals are generated by shifting them up/down
the frequency axis according to the results of short-term frequency
analysis. This shifting is equivalent to changing the shape of a
singer’s vocal tract.

All of these pitch-shifted signals are generated by using SoX1.

3. EXPERIMENTAL EVALUATION

The proposed methods were tested in two experiments, one evaluat-
ing the singer identification and the other evaluating the cross-gender
vocal timbre similarity estimation.

The songs used in these experiments were monaural 16-kHz dig-
ital recordings. The singers are listed in Table 1. We used 36 songs
by 12 Japanese singers (6 male and 6 female), each singer sung 3
songs. Each of the songs included only one vocal. The songs were
taken from commercial music CDs that appeared on a well-known
popular music chart2 in Japan and were placed in the top twenty on
weekly charts appearing between 2000 and 2008.

Six recordings pitch-shifted by amounts ranging from−3 to+3
semitones were generated in 1-semitone steps. Since we also used
the original recordings, we had 7 versions of each song and thus used
D = 252(= 7× 3 songs ×12 singers ) songs for LDA.

Vocal features were extracted from each song (see 2.1), with
the top 15% of feature frames used as reliable vocal frames. The
number of clusters V of the k-means algorithm was set to 100. The
number of topics K was set to 100, and the model parameters of
LDA were trained by using the collapsed Gibbs sampler [46] with
1000 iterations. The hyperparameter α(0) was initially set to 1 and
the hyperparameter β(0) was initially set to 0.1.

1http://sox.sourceforge.net/
2http://www.oricon.co.jp/
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Fig. 4. The mean reciprocal rank and reciprocal ranks for all songs.

3.1. Experiment A: singer identification

To evaluate the singer identification using the LDA mixing weights
π, experiment A used only the DA = 36(= 12 × 3) songs without
pitch-shifted signals. The left side of Fig. 3 shows a similarity matrix
based on distance calculation using π (eq. 7). The right side of the
figure shows that the similarities of top three similar songs of each
song are filled with black color.

Figure 4 shows the mean reciprocal rank R defined as follows:

R =
1

DA

DA∑
d=1

1

rd
× 100 (9)

The mean reciprocal rank is the average of the reciprocal ranks of
results forDA queries, where rd indicates the rank of song d decided
from the similarity. If a same singer’s song has the highest similarity,
the rank is 1.

These results suggest that songs by the same singer have similar
topic weights, and the topic weights can be used to identify singers.

3.2. Experiment B: cross-gender similarity

To evaluate the cross-gender similarity estimation using the LDA
mixing weights π, experiment B used all 252 songs. Table 2 shows
that a singer ID of the highest similarity song of each query and
these values of pitch-shifted. The mixing weights of the 36 original
songs without pitch-shifting were used as queries, and the retrieval
targets were 245 songs (= 252−7: excluding 7 versions of oneself).
Figure 5 shows numbers of singers who sang the highest similar song
of each query. The mixing weights of the all 252 songs were used as
queries.
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Table 2. The highest similarity song of each query, and these values
of pitch-shifted (experiment B). The “+1” means pitch-shifting up
by 1 semitone. The underline means the most similar songs are sung
by the opposite gender (M6 and F3).

Queries Most similar song for each query
(±0/×1) query 1 query 2 query 3
M1 F4 (−3) F4 (−3) F6 (−3)
M2 M1 (−2) M3 (+1) M3 (+1)
M3 M2 (+1) M2 (±0) M6 (−1)
M4 F6 (−3) F5 (−3) F1 (−3)
M5 M3 (+2) F1 (−3) M2 (−1)
M6 F3 (−3) M3 (+1) F3 (−3)
F1 F6 (+1) F5 (+1) F5 (+2)
F2 F6 (±0) F6 (+1) F6 (+1)
F3 M6 (+3) M6 (+3) M6 (+3)
F4 F5 (+3) F4 (±0) F6 (±0)
F5 M6 (+3) M6 (+2) F2 (−2)
F6 F2 (−2) F5 (+2) F4 (+1)

Fig. 5. Number of singers of the highest similarity song of each
query (252 queries).

These results show that Hirai Ken (M6) and Hitoto Yo (F3) are
similar when pitch-shifted by 3 semitones. In fact, they are well-
known similar singers when pitch-shifted by 3 semitones. This sug-
gests that the proposed method work well for the estimation of cross-
gender similarity.

Figure 6 shows the mixing weights of a song “HitomiWoTojite”
sung by Hirai Ken (M6) and its most similar song “MoraiNaki” sung
by Hitoto Yo (F3) 3 semitones lower. The figure shows both song
have high topic weights of topic 38 (the cluster number of the k-
means algorithm).

3.3. Singer cloud

Figure 7 shows the singer clouds of topic 38 and 83. Topic 38 is high
weight with both Hirai Ken (M6) and Hitoto Yo (F3), and topic 83
is high weight with only Hirai Ken (M6), as shown in Fig. 6. The
size of each singer’s name is defined by summing the same song’s 7
mixing weights (i.e., there are three names of each singer).

The results suggest that topic 38 has characteristics shared by
Hirai Ken (M6), Hitoto Yo (F3) and Utada Hikaru (F5), and that
topic 83 has characteristics shared by Hirai Ken (M6), Tokyo Ji-

Hitoto Yo (F3) / “MoraiNaki” (-3 semitones）

Hirai Ken (M6) / “HitomiWoTojite” (±0 semitone）
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Fig. 6. Mixing weights of the similar song pair, Hirai Ken (M6) and
Hitoto Yo (F3, 3 semitones lower). The topic 38 is high weight in
both, and the topic 83 is high weight with only M6.

Singer cloud of topic 38 Singer cloud of topic 83

Fig. 7. Examples of topic visualization by the singer cloud. Topic
38 is high weight with both Hirai Ken (M6) and Hitoto Yo (F3), and
topic 83 is high weight with only M6, as shown in Fig. 6.

hen (F4) and GLAY (M4). Even though these two topics are shared
by Hirai Ken, we found that they represent different factors of his
singing voices.

4. CONCLUSIONS AND FUTUREWORK

This paper describes a vocal timbre analysis method based on la-
tent Dirichlet allocation (LDA) where each song is represented as a
weighted mixture of multiple topics that are shared by all singing
voices. The paper also describes a method for estimating cross-
gender vocal timbre similarity. While previous MIR works focused
on retrieving only existing music, our MIR based on this cross-
gender similarity can find songs whose pitch-shifted singing voices
are similar to a query song. The experimental results showed that
the mixing weights of LDA can be used for singer identification (see
3.1), cross-gender similarity estimation (see 3.2), and singer-cloud
semantic visualization (see 3.3).

Since this paper focused on vocal timbre features, we plan to use
F0 information or other singing features as the next step. The future
work will also include the use of a probabilistic topic model based
on LDA [35,47, 48] and a nonparametric Bayesian approach [48].
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