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ABSTRACT

The objective of single-channel inverse filtering is to design an in-
verse filter that achieves dereverberation while being robust to an
inaccurate room impulse response (RIR) measurement or estimate.
Since a stable and causal inverse filter typically does not exist, ap-
proximate time-domain inverse filtering techniques such as single-
channel least-squares (SCLS) have been proposed. However, be-
sides being computationally expensive and often infeasible, SCLS
generally leads to distortions in the output signal in the presence of
RIR inaccuracies.

In this paper, a theoretical analysis is initially provided, show-
ing that the direct inversion of the acoustic transfer function in the
frequency-domain generally yields instability and acausality issues.
In order to resolve these issues, a novel frequency-domain inverse
filtering technique is proposed that incorporates regularization and
uses a single-channel speech enhancement scheme. Experimental
results demonstrate that the proposed technique yields a higher dere-
verberation performance and has a significantly lower computational
complexity compared to the SCLS technique.

Index Terms— acoustic single-channel inversion, stability,
causality

1. INTRODUCTION

Speech dereverberation techniques are crucial for improving speech
intelligibility, perceptual speech quality, and the performance of au-
tomatic speech recognition systems in reverberant environments [1,
2]. When the room impulse response (RIR) between the source
and the microphone can be measured or estimated, an inverse filter
can be designed to invert the RIR, and hence, achieve dereverbera-
tion [3, 4, 5]. Although such an approach sounds attractive in theory,
designing and applying an inverse filter results in several drawbacks
in practice. Acoustic transfer functions are generally mixed-phase
functions [3] and therefore a stable and causal inverse filter does
not exist. Furthermore, the inverse filter is typically designed us-
ing an inaccurate RIR, where inaccuracies can arise from tempera-
ture variations [6], spatial mismatch [7], or the sensitivity of blind
system identification methods to near-common zeros and interfer-
ing noise [8]. This will commonly lead to distortions in the output
signal [7].

In order to overcome some of these issues, alternative techniques
such as single-channel least-squares (SCLS) [4] and homomorphic
inverse filtering [4, 9] have been investigated. In SCLS, the squared
error between the output of the system and a desired response is
minimized. In homomorphic inverse filtering, the RIR is first de-
composed into a minimum-phase component and a maximum-phase
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component. An exact time-domain inverse filter is designed for the
minimum-phase component, whereas the maximum-phase compo-
nent is only approximately inverted using a delay and truncation. In
a comparative study between SCLS and homomorphic inverse filter-
ing in [4], it has been concluded that SCLS yields a superior dere-
verberation performance. However, the SCLS inverse filtering tech-
nique still results in several drawbacks in practice. The RIR can be
several thousand taps long, resulting in a computationally complex
and often infeasible inverse filter design [10]. Furthermore, the out-
put signal is often distorted when the SCLS filter is designed using
an inaccurate RIR [10].

In this paper, first a theoretical analysis is provided, showing that
the direct inversion of the acoustic transfer function in the frequency-
domain typically yields instability and acausality issues, giving rise
to undesirable tones and pre-echoes. A frequency-domain inverse fil-
tering technique is then proposed, which incorporates regularization
to reduce the tones and uses a single-channel speech enhancement
scheme to reduce the pre-echoes.

2. PROBLEM FORMULATION

Consider a single-channel acoustic system, where the reverberant
microphone signal x(n) at time index n arises from the convolution
of the clean speech signal s(n) with the time-invariant RIR h(n) of
length Lh, i.e.,

x(n) = s(n) ∗ h(n). (1)
In order to recover the clean speech signal, an inverse filter g(n)
should be designed such that

h(n) ∗ g(n) = d(n), (2)

with {
d(n) = 1 at n = 0,
d(n) = 0 elsewhere. (3)

In [3] it has been experimentally validated that acoustic transfer
functions are typically mixed-phase functions, such that a causal
and stable inverse filter does not exist. Alternatively, the SCLS
technique [4] has been proposed, which aims at designing an ap-
proximate inverse filter. In SCLS, a time-domain filter g of length
Lg is designed, with g = [g(0) g(1) . . . g(Lg − 1)]T , by express-
ing (2) in terms of a matrix/vector multiplication as

Hg = d, (4)

with H being the (Lh + Lg − 1) × Lg-dimensional convolution
matrix of h(n) and d being the (Lh + Lg − 1) × 1-dimensional
desired response vector d = [1 0 . . . 0]T . Minimizing the least-
squares error JSCLS = ‖Hg − d‖22 yields the SCLS filter

gSCLS = (HTH)−1HTd. (5)

Designing and using gSCLS however encounters several drawbacks
in practice. The true RIR is generally not available and should ei-
ther be measured beforehand or estimated [11]. Independently of
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whether the RIR is measured or estimated, there is typically a mis-
match between the true RIR h(n) and the available RIR ĥ(n) [6,
7, 8]. The SCLS filter designed using the inaccurate ĥ(n) may
fail to achieve dereverberation, leading to distortions in the output
signal [10]. Furthermore, ĥ(n) can be several thousand taps long,
resulting in a computationally complex, numerically unstable, and
often infeasible filter design [10], due to the multiplication and in-
version of the high-dimensional convolution matrix in (5).

In order to avoid the inversion of the convolution matrix, a
frequency-domain inverse filter can be designed instead. Consider
the STFT-representation of the signal model in (1), i.e.,

X(k, l) = S(k, l)H(k), (6)

with k = 0, . . . , K − 1, denoting the frequency index and l de-
noting the frame index. We assume that K ≥ Lh, such that the
convolution in (1) can be accurately represented by multiplication in
the STFT-domain. Given an estimate Ĥ(k) of the acoustic transfer
function H(k), an inverse filter G(k) can be directly designed as

G(k) =
1

Ĥ(k)
. (7)

In this paper, we will first analyze the instability and acausality is-
sues associated with G(k) and show that applying this inverse fil-
ter will typically give rise to undesirable tones and pre-echoes. A
fast frequency-domain inverse filtering technique is then proposed,
which aims at realizing a stable approximate inverse filter to avoid
the tones as well as at reducing the pre-echoes arising due to acausal-
ity.

3. FREQUENCY-DOMAIN CHANNEL INVERSION

3.1. Instability and acausality of G(k)

In this section, the fundamental concepts of analyzing the stability
and causality of discrete-time systems via the Z-transform and the
region of convergence (ROC) are briefly reviewed and used to show
that using the frequency-domain inverse filterG(k) in (7) encounters
two main drawbacks: (i) the zeros of the RIR on the unit circle yield
an unstable inverse filter, causing undesirable tones in the processed
signal, and (ii) the zeros of the RIR outside of the unit circle result
in an acausal inverse filter, and thus in pre-echoes in the processed
signal.

The Z-transform of a sequence p(n) is defined as

P (z) =
∞∑

n=−∞

p(n)z−n, (8)

while the ROC is defined as the set of complex numbers z for which
P (z) converges. For a filter to be stable, the ROC must include the
unit circle, i.e., |z| = 1, whereas for a filter to be causal, the ROC
must extend outward from the outermost pole. It should be noted that
theZ-transform is unique if and only if its ROC is also specified. If a
Z-transform without a ROC is provided, an inverseZ-transform can
be determined based on whether stability or causality is desired [12].

Since G(k) in (7) is related to the Z-transform G(z) of the in-
verse filter g(n) by

G(k) = G(z)
∣∣∣
z=e

j 2πk
K
, (9)

analysis of the ROC ofG(z) can be used to determine whetherG(k)
realizes a stable or a causal filter.

Fig. 1(a) depicts the pole-zero representation of a measured RIR
from the MARDY database [13], with a zoomed in portion presented

in Fig. 1(b). As illustrated in this figure, the zeros of a typical RIR
tend to cluster near the unit circle [14], lying slightly inside, outside,
and on the unit circle. Hence, the inverse G(z) of a typical RIR
will contain poles inside, outside, and on the unit circle. Given the
relation in (9), clearly the poles of G(z) on the unit circle will result
in an unstable inverse filter G(k), causing undesirable tones in the
processed signal. In the following, a simple illustrative example is
presented demonstrating how the remaining poles ofG(z) inside and
outside the unit circle affect the causality of the inverse filter G(k)
in (7).

Example 1: Consider the impulse response with transfer func-
tion Ĥ(z) = (1 − 0.5z−1)(1 − 2z−1). The Z-transform of its
inverse is given by

G(z) =
1

(1− 0.5z−1)(1− 2z−1)
, (10)

with the pole at z = 0.5 and at z = 2 being inside and outside the
unit circle, respectively. The ROC of rationalZ-transforms has to be
bounded by poles or extend to infinity [12], hence, for the rational
G(z) in (10) only 3 different ROC definitions are possible, i.e., |z| <
0.5, |z| > 2, or 0.5 < |z| < 2. When a frequency-domain inverse
filter is designed as in (7), a finite response is obtained sinceG(z) 6=
∞ for z = ej

2πk
K . Therefore it can be said that G(k) in (7) realizes

the filter with the Z-transform in (10) and the ROC including the
unit circle, i.e., 0.5 < |z| < 2. The inverse Z-transform of (10) with
the ROC being 0.5 < |z| < 2 is given by [12]

g(n) = −1

3
0.5nu(n)− 4

3
2nu(−n− 1), (11)

with u(n) denoting the unit step function. The sequence in (11) rep-
resents a stable bilateral filter, with a causal component due to the
pole inside the unit circle and an acausal component due to the pole
outside of the unit circle.

Based on this example, it can be concluded that for a typical
RIR with zeros outside the unit circle, the inverse filter G(k) in (7)
results in acausal filtering of the microphone signal, hence yielding
undesirable pre-echoes.

3.2. Frequency-Domain Single-Channel Dereverberation

In order to overcome the previously described issues of instability
and acausality, the frequency-domain inverse filtering technique de-

(a) (b)

Fig. 1: Pole-zero representation of a typical RIR.
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picted in Fig. 2 is proposed, where the undesirable tones and pre-
echoes are reduced by incorporating regularization and a speech en-
hancement scheme.

3.2.1. Designing a stable approximate inverse filter

The advantage of a frequency-domain inverse filter design lies in the
fact that the transfer function is being evaluated on the unit circle,
hence the unstable poles can be directly manipulated. In order to
obtain a stable approximate inverse filter, we propose designing a
regularized filter Gδ(k), i.e.,

Gδ(k) =
Ĥ∗(k)

|Ĥ(k)|2 + δ
, (12)

where Ĥ∗(k) denotes the conjugate of Ĥ(k) and δ is a frequency-
independent regularization parameter. The incorporation of regular-
ization moves the unstable poles of G(z) on the unit circle inside
the unit circle, hence replacing the unstable filtering components by
causal filtering components (c.f. Example 1). While regularization
strongly reduces the tones in the processed microphone signal, the
synthesized signal sδ(n) exhibits pre-echoes due to the remaining
acausality in Gδ(k). To remove the acausality in Gδ(k), clearly the
same approach as in homomorphic inverse filtering can be applied,
i.e., delaying and truncating the inverse discrete Fourier transform of
Gδ(k). However, such an approach penalizes the achievable dere-
verberation performance and has been shown to be inferior to the
SCLS technique.

3.2.2. Reducing the pre-echoes in the processed signal

In order to reduce the pre-echoes in sδ(n), we propose to apply
a single-channel speech enhancement scheme which estimates the
pre-echo power spectral density (PSD) and employs this estimate to
compute an enhancement gain function. In the STFT-domain, sδ(n)
can be written as

Sδ(k
′, l′) = Sdδ (k′, l′) + E(k′, l′), (13)

where Sdδ (k′, l′) represents the desired speech spectral coefficients,
E(k′, l′) represents the spectral coefficients of the pre-echoes, k′ =
0, . . . , K′ − 1, denotes the frequency index, and l′ denotes the
frame index. It should be noted that to account for the short-time sta-
tionarity of speech, the number of frequency bins K′ in this stage is
K′ � K. Similarly to the commonly made assumption in spectral
subtraction-based dereverberation techniques that the direct signal
and late reflections are uncorrelated [15], the direct desired speech
Sdδ (k′, l′) and the pre-echoes spectral coefficients E(k′, l′) can be
assumed to be uncorrelated in each observation frame. Further-
more, given that the pre-echoes in sδ(n) can be regarded as fairly
non-stationary noise, we propose to estimate the PSD σ̂2

E(k′, l′) =
E{|E(k′, l′)|2} by employing the noise PSD estimator based on the
speech presence probability with fixed priors [16], since it has been
experimentally validated that this estimator exhibits a fast tracking
performance for non-stationary noise. It should be noted that due to
K′ � K, E(k′, l′) is significantly more stationary than Sdδ (k′, l′),

STFT
K ≥ Lh

Gδ(k)

Speech
Enhancement ISTFT

x(n) X(k, l) Sδ(k, l)

sδ(n)ŝdδ(n)

Fig. 2: Schematic representation of the proposed technique.

making it plausible for the noise PSD estimator in [16] to discrimi-
nate between desired speech and pre-echoes.

Using σ̂2
E(k′, l′), the a priori SNR ξ̂(k′, l′) is then estimated

using the cepstral smoothing approach proposed in [17], with

ξ̂(k′, l′) =
E{|Sdδ (k′, l′)|2}
σ̂2
E(k′, l′)

. (14)

Finally, a Wiener gain function GW(k′, l′) is computed and applied
to Sδ(k′, l′) to obtain an estimate of the desired speech spectral co-
efficients Ŝd

δ (k′, l′), i.e., Ŝd
δ (k′, l′) = GW(k′, l′)Sδ(k

′, l′), with

GW(k′, l′) =
ξ̂(k′, l′)

1 + ξ̂(k′, l′)
. (15)

4. EXPERIMENTAL RESULTS

To investigate the performance of the proposed technique and com-
pare it to the performance of SCLS, we have considered a mea-
sured RIR h = [h(0) . . . h(Lh − 1)]T with reverberation time
T60 ≈ 450 ms as the true RIR to be inverted. The sampling fre-
quency is fs = 16 kHz and the RIR length is Lh = 7200. The
inaccurate RIR ĥ = [ĥ(0) . . . ĥ(Lh − 1)]T used for the inverse
filter design is simulated as in [18], i.e., ĥ(n) = h(n) [1 + e(n)],
with e(n) being an uncorrelated Gaussian noise sequence with zero
mean and an appropriate variance, such that a normalized mismatch
NM, defined as

NM = 10 log10

‖h− ĥ‖22
‖h‖22

, (16)

is generated. The considered normalized mismatch values areNM ∈
{−33 dB, −30 dB, . . . , −9 dB}.

For the proposed technique, the regularized inverse filter Gδ(k)
is computed using K = 16384 and an experimentally determined
regularization parameter δ = 10−2. The computed Gδ(k) is ap-
plied to the received microphone signalX(k, l), where zero-padding
of 1984 samples, a Hanning window of length K, and an overlap
of 50% is used for the spectral analysis. The re-synthesized sig-
nal sδ(n) is then processed by the proposed speech enhancement
scheme, where the spectral analysis is done using K′ = 512 and an
overlap of 50%.

Since it has been shown that regularization is also effective in
increasing the robustness of least-squares techniques to RIR inaccu-
racies [6, 19], we believe it is fair to compare the performance of
the proposed technique to the performance of the regularized SCLS
technique. The regularized SCLS filter is designed as gR

SCLS
=

(ĤT Ĥ + δI)−1ĤTd, with δ = 10−2 being an experimentally de-
termined regularization parameter and I being the identity matrix.
For a valid comparison between the techniques, the length of the
regularized SCLS filter is also set to Lg = K = 16384.

For the sake of clarity, the experimental results are structured
into two parts. In the first experiment, we validate the provided
theoretical considerations as well as show that the proposed tech-
nique is effective in resolving the instability and acausality issues
arising with the inverse filter design. These validations are done
for NM = −33 dB by analyzing the spectrograms of the processed
signals, where undesirable tones and pre-echoes can be visualized.
In the second experiment, the dereverberation performance and the
perceptual speech quality of the proposed technique and the regular-
ized SCLS technique is compared for all considered NM. The dere-
verberation performance is evaluated using the speech to reverbera-
tion modulation energy ratio (SRMR) [20], whereas the perceptual
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speech quality is evaluated using the objective speech quality mea-
sure PESQ [21]. The reference signal used in PESQ is the anechoic
speech signal.

Experiment 1 . Fig. 3(a) depicts the spectrogram of the clean
speech signal, whereas Fig. 3(b) depicts the spectrogram of the re-
ceived reverberant signal. To validate that the inversion of the acous-
tic transfer function in the frequency domain leads to instability and
acausality, Fig. 3(c) depicts the spectrogram of the processed signal
when directly applying the inverse filter G(k) from (7). It can be
seen that tones appear at several frequencies (e.g. at f ≈ 300 Hz,
f ≈ 3 kHz), confirming that the inverse filter G(k) results in insta-
bility. Furthermore, also the pre-echoes due to acausality are man-
ifested, for example in the silence region before the speech signal
starts. Applying the regularized inverse filter Gδ(k) significantly re-
duces the tones as shown in Fig. 3(d), however, the processed signal
still contains pre-echoes. Applying the proposed speech enhance-
ment scheme after Gδ(k) reduces the pre-echoes, as shown by the
spectrogram in Fig. 3(e), where the pauses between words (e.g. at
t ≈ 1.2 s) are partly restored again. Therefore, the instability and
acausality issues arising with the frequency-domain inverse filter de-
sign are resolved to a large extent by the proposed technique. Fur-
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Fig. 3: Spectrogram of (a) the clean signal s(n), (b) the reverberant
signal x(n), (c) the signal processed with G(k), (d) the signal pro-
cessed with Gδ(k), and (e) the signal processed with the proposed
technique.
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Fig. 4: Performance of the regularized SCLS technique and of the
proposed technique for differentNM in terms of (a) SRMR improve-
ment and (b) PESQ score improvement.

thermore, by comparing the spectrograms of the reverberant signal
in Fig. 3(b) and of the signal processed by the proposed technique in
Fig. 3(e), it can be seen that the proposed inverse filtering technique
achieves dereverberation.

It should be noted that delaying and truncating the inverse dis-
crete Fourier transform of Gδ(k) to remove the pre-echoes yields a
lower performance than when using the proposed speech enhance-
ment scheme. However, these results are omitted here due to space
constraints.

Experiment 2 . To analyze the dereverberation performance
of the proposed technique and regularized SCLS, Fig. 4(a) presents
the obtained SRMR improvement compared to the unprocessed
microphone signal for all considered mismatches NM. The pre-
sented results show that the proposed technique yields an SRMR
improvement of approximately 5.5 dB for moderate mismatch val-
ues, whereas for high mismatch values such as NM = −9 dB the
SRMR improvement is approximately 2 dB. On the other hand, the
regularized SCLS technique often leads to a deterioration of the
SRMR when compared to the unprocessed microphone signal, as
indicated by the negative SRMR improvement values. In order to
compare the perceptual speech quality, Fig. 4(b) depicts the PESQ
score improvement for both techniques. It can be noticed that for
all NM, the proposed technique yields a higher perceptual speech
quality than regularized SCLS. As expected, the higher amount of
dereverberation achieved by the proposed technique leads to a higher
perceptual speech quality.

As an indication of the computational complexity of the tech-
niques, we also state the processing time of their MATLAB imple-
mentation, including the filter design and all the necessary process-
ing steps to obtain a final time-domain output signal. To process a
4 s long input signal, the proposed technique requires only 0.5 s,
whereas regularized SCLS requires approximately 4× 103 s.

The presented experimental results illustrate that the proposed
technique is not only significantly faster than SCLS, but it also re-
sults in a higher dereverberation performance and perceptual speech
quality.

5. CONCLUSION

In this paper, it has been theoretically illustrated that the direct inver-
sion of the acoustic transfer function in the frequency-domain yields
undesirable tones and pre-echoes due to instability and acausality.
A novel frequency-domain inverse filtering technique has been pro-
posed, which incorporates regularization to reduce the tones and ex-
ploits a speech enhancement scheme to reduce the pre-echoes. Ex-
perimental results demonstrate that the proposed technique yields
a higher performance and is significantly faster than the alternative
SCLS inverse filtering technique.
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