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ABSTRACT

The adaptive multiple-input/output inverse theorem (A-

MINT) multichannel equalization algorithm was proposed

to address the computational complexity of the MINT algo-

rithm. However, similar to MINT, A-MINT also assumes

an arbitrary modeling delay for the target response which,

if inappropriately chosen, results in misconvergence or poor

performance. We present a new adaptive algorithm that

exploits the sparsity of a target response to estimate equaliza-

tion filters. The proposed algorithm automatically selects a

suitable modeling delay for the equalized response so as to

achieve a minimum-norm solution.

Index Terms— Adaptive multichannel equalization,

dereverberation, acoustic impulse response, sparseness

1. INTRODUCTION

Channel equalization techniques have been employed in ap-

plications such as speech dereverberation in order to mitigate

the effect of multipath propagation. The quality of a speech

signal received by a distant microphone within an enclosed

environment is often degraded by reverberation [1]. Speech

dereverberation algorithms are therefore employed to restore

speech quality by suppressing reverberation artifacts. One of

the well-known techniques to achieve speech dereverberation

is the inverse filtering of received signals using the acoustic

impulse responses (AIRs) estimated by blind system identifi-

cation (BSI) algorithms [2]–[6]. However, since the AIRs are

generally non-minimum phase, direct inversion of these AIRs

will result in unstable inverse filters.

Single- as well as multi-channel equalization algorithms

have been proposed to achieve stable inversion of non-

minimum phase AIRs. Multichannel algorithms are, in gen-

eral, preferred over single-channel algorithms, since the latter

result in only approximate equalization [7], [8]. In [8], a

multichannel equalization (MCEQ) algorithm based on the

multiple-input/output inverse theorem (MINT) has been pro-

posed for achieving exact inverse filters if the channels are

co-prime. However, the least-square solution of MINT in-

volves the inversion of a filtering matrix with dimension that

is proportional to the length of AIRs, making it computation-

ally complex for high-order AIRs. To address the computa-

tional complexity associated with MINT, the adaptive MINT

(A-MINT) algorithm was proposed in [9]. In A-MINT, the

inverse filters are iteratively estimated by minimizing a cost

function that is formulated from the MINT relation.

MINT and its non-adaptive as well as adaptive variants

such as presented in [10]–[15] use a fixed target response with

an arbitrarily chosen modeling delay. It has been shown that

the equalization performance degrades for an inappropriate

choice of modeling delay [10], [16], [17]. In this paper we

propose an adaptive MCEQ algorithm that is based on the

MINT relation. Unlike A-MINT, the cost function of the pro-

posed algorithm is derived from the sparseness measure of

the target response. As opposed to existing algorithms with a

fixed target response, the proposed algorithm is able to deter-

mine the target response with an appropriate modeling delay

during the adaptation process. We note that such an approach,

in which the target response is automatically selected by the

algorithm, has not been employed for MCEQ in existing lit-

erature.

2. REVIEW OF MINT AND A-MINT

For an M -channel acoustic system, and defining m as the

channel index, the MINT algorithm estimates a set of inverse

filters gm = [gm,0, . . . , gm,Lg−1]
T ,m = 1, . . . ,M , corre-

sponding to AIR hm = [hm,0, . . . , hm,Lh−1]
T where Lg and

Lh are the length of gm and hm, respectively. These inverse

filters must satisfy the condition [8]

M∑
m=1

Hmgm = d, (1)

where Hm is a Ld × Lg convolution matrix of hm, Ld =
Lg + Lh − 1 and the Ld × 1 target response

d = [01×τ , 1,01×(Ld−τ−1)]
T (2)

is a Kronecker delta function while 01×τ is a 1 × τ null

vector. It is important to note that, in practice, a modeling
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delay τ is introduced to the target response d to relax the

causality constraint [7], [10]. In addition, Lg is chosen such

that Lg ≥ Lc [18], where the critical length Lc = �Lh−1
M−1 �,

M ≥ 2 and �.� denotes the ceiling operator. The MCEQ

filters g = [gT
1 , . . . ,g

T
M ]T can be estimated from (1) in the

least-square sense if the channels are co-prime. This estimate

can be achieved using

ĝ = arg min
ĝ

‖d−Hĝ‖22 = H+d, (3)

where (.)+ is the matrix pseudo-inverse operator, ĝ is an es-

timate of g and H = [H1, . . . ,HM ]. In practice, ĝ is com-

puted using an estimate Ĥ obtained from AIR estimates ĥm

via BSI algorithms such as proposed in [2]–[6], i.e., ĝ =
Ĥ+d.

For typical high-order AIRs, the dimension of H becomes

significantly large. As a consequence, the inversion operation

in (3) imposes a high computational load on MINT. In order

to avoid direct inversion of H and achieve complexity reduc-

tion, the A-MINT algorithm has been proposed [9]. The cost

function of this least-mean-square based algorithm is derived

from (3) and is given by

JA−MINT(n) = ‖d−Hĝ(n)‖22. (4)

The gradient of A-MINT, computed by differentiating (4)

w.r.t ĝ(n), is given as

∇JA−MINT(n) = −2HTd+ 2HTHĝ(n). (5)

Defining μ as a non-negative step-size, the update equation of

A-MINT is expressed as

ĝ(n+ 1) = ĝ(n)− μ∇JA−MINT(n)|ĝ=ĝ(n). (6)

It has been shown in [10], [16] that an appropriate choice

of modeling delay τ is essential to achieve good equalization

performance. Since it is challenging to find the exact delay

in practice, an arbitrary value is often chosen for τ . For an

inappropriate choice of τ , MINT and A-MINT result in an

undesired equalization filter solution, giving a distorted out-

put on filtering.

To illustrate the effect of τ on the equalization perfor-

mance of A-MINT, we simulate using a set of M = 5 syn-

thetic AIRs, each of length Lh = 1024, generated using the

method of images [19]. We have used a sampling frequency

fs = 16 kHz with reverberation time T60 = Lh/fs. Equal-

ization was then achieved using A-MINT with Lg = Lc and

μ = 0.5, for τ = 0, Lh/4, Lh/2, and 3Lh/4. To quantify the

equalization performance, we employed

η(n) = 10 log10[1− γ(n)] dB, (7)

where γ(n) is the spectral flatness measure (SFM) [20] of the

estimated response d̂(n) = Hĝ(n). The SFM is defined as

the ratio of the geometric mean of a spectrum to its arithmetic
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Fig. 1. Variation of η as a function of τ , for A-MINT.

mean and hence, if d̂(n) is a Dirac function having a flat mag-

nitude spectrum, η(n) = −∞ dB giving perfect equalization.

The variation of η(n) for each τ is plotted in Fig. 1 and

we note that, among the given τ values, τ = Lh/4 achieves

the best equalization performance for the given set of AIRs.

On the other hand, for τ = 0, A-MINT does not converge and

this results in an undesired response. These results show that

the performance of A-MINT is highly dependent on τ and

hence it is important to select an appropriate value of τ .

3. THE PROPOSED AMCEQ-SP ALGORITHM

The sparseness of an arbitrary L×1 vector v can be quantified

by computing the sparseness measure [21], [22]

ξ(v) =

√
L− (‖v‖1

/‖v‖2)√
L− 1

, (8)

where 0 ≤ ξ(v) ≤ 1. While ξ(v) = 1 for a perfectly sparse

vector with only a single non-zero element, a fully dispersive

vector with elements having the same magnitude results in

ξ(v) = 0.

From (2) we note that, the target response d is a perfectly

sparse vector corresponding to ξ(d) = 1. We therefore ex-

ploit the sparseness measure of d̂(n) for estimating MCEQ

filters. The proposed adaptive MCEQ with sparseness con-

straint (AMCEQ-SP) algorithm is derived from the minimiza-

tion criteria given by

ĝ(n) = argmin
ĝ(n)

{1− ξ[Hĝ(n)]}2. (9)

From (9), a cost function is constructed as

J(n) =

[
1−

√
Ld − (‖Hĝ(n)‖1

/‖Hĝ(n)‖2)√
Ld − 1

]2
. (10)

It is important to note that minimization of (10) implies

‖Hĝ(n)‖1 = ‖Hĝ(n)‖2. The gradient of this iterative al-

gorithm is subsequently obtained by differentiating (10) w.r.t

ĝ(n) as

∇Jf(n) =
∂J(n)
∂ĝ(n)

= 2{1−ξ[Hĝ(n)]}√
Ld−1

{
HT sgn[Hĝ(n)]

‖Hĝ(n)‖2
−

‖Hĝ(n)‖1H
T [Hĝ(n)]

2‖Hĝ(n)‖3
2

}
, (11)
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where sgn(.) is an element-wise sign function defined as

sgn(v) =

{
v/|v| v 	= 0,
0 v = 0.

Applying the gradient obtained in (11) we achieve the update

equation of the proposed AMCEQ-SP algorithm as

ĝ′(n+ 1) = ĝ(n)− μ

‖h‖22
∇Jf(n), (12)

ĝ(n+ 1) = sgn[d′(n+ 1, τ + 1)]
ĝ′(n+ 1)∥∥∥d̂′(n+ 1)

∥∥∥
2

,(13)

where d̂′(n + 1) = Hĝ′(n + 1), h =
[
hT
1 , . . . ,h

T
m

]T
and

d′(n, τ + 1) is the largest-magnitude coefficient in d̂′(n).
In (12) we have normalized μ in order to minimize its sensi-

tivity to variations in the energy of h.

In (13) we have employed normalization in order to im-

pose a unit-norm constraint on d̂(n+1), i.e., ‖Hĝ(n+1)‖2 =
1. This unit-norm constraint in turn simplifies the gradient as

∇Jf(n) =
2{1−ξ[Hĝ(n)]}√

Ld−1

{
HT sgn[Hĝ(n)]−

0.5‖Hĝ(n)‖1HT [Hĝ(n)]
}

(14)

after the first iteration. The gradient given by (11) enforces

only sparseness without taking the magnitude of the largest

nonzero coefficient of equalized response into account.

Hence, in order to achieve a response with a non-negative

largest peak we apply a magnitude correction in (13) by mul-

tiplying with sgn[d′(n+ 1, τ + 1)]. Since initialization using

a null vector will result in numerical errors in (11) we use, in

this work, ĝm(0) = [δ,01×Lg−1]
T , where δ = 10−3.

It is also important to note that the gradient of AMCEQ-

SP given in (11) is derived so as to enforce sparsity in d̂(n).
As a result, ĝ is estimated such that all but one coefficient in

d̂(n) are attracted towards zero magnitude at each iteration.

Since no constraint has been imposed on τ , the algorithm con-

verges to a minimum-norm solution having an appropriate τ .

We now analyze the convergence behavior of the pro-

posed AMCEQ-SP algorithm using the general update equa-

tion given in (12). In this analysis, for simplicity and mathe-

matical tractability, we do not consider the energy constraint

and magnitude correction which are applied in (13) for scal-

ing d̂′(n). Defining Δĝ′(n+ 1) = ĝ′(n+ 1)− g′, where g′

is the true solution of (12), we can write, using (12),

Δĝ′(n+ 1) = Δĝ′(n)− μ′∇Jf(n)

= Δĝ′(n) + μ′ρ(n)
{

HT sgn[̂d′(n)]
‖̂d′(n)‖2

−

HTHĝ′(n)‖̂d′(n)‖1

2‖̂d′(n)‖3
2

}
, (15)

where ρ(n) = 2{ξ[d̂′(n)] − 1}/(√Ld − 1) and μ′ = μ
‖h‖2

2
.

Defining ρ′(n) = ρ(n)‖d̂′(n)‖1/2‖d̂′(n)‖32 and taking the
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Fig. 2. Variation of η as a function of λ, for AMCEQ-SP.

expectation on both sides of (15) we obtain

E[Δĝ′(n+ 1)] =

[
ILd×Ld

− μ′R
]
E[Δĝ′(n)]−

μ′HTE

[
ρ(n) sgn[̂d′(n)]

‖̂d′(n)‖2
+ ρ′(n)d′

]
,(16)

where ILd×Ld
is the Ld × Ld identity matrix, d′ = Hg′

and R = E[ρ′(n)]HTH. We note that, since E[ĝ′(n)] =
E[Δĝ′(n)] + g′, AMCEQ-SP can converge in the limit given

by

E[ĝ′(∞)] = − H+E{sgn[d̂′(∞)]}
E

[
‖̂d′(∞)‖1

2‖̂d′(∞)‖3
2

]
E[‖d̂′(∞)‖2]

. (17)

3.1. L1-norm constraint for faster convergence

For AMCEQ-SP with the unit-norm constraint, since ‖d̂(n)‖2 =

1, in order to achieve ξ[d̂(n)] = 1 it is required that ‖d̂(n)‖1 =
1. Therefore, to improve the convergence rate of the energy

constrained AMCEQ-SP, we introduce a penalty function

defined as

Jp = 1− ‖d(n)‖1 (18)

to the cost function. This penalty function is derived so as

to constrain the L1-norm of d̂(n) to unity. The penalty term

derived from (18) is given by

∇Jp(n) = −2(1− ‖d(n)‖1)HT sgn
[
d̂(n)

]
. (19)

The modified gradient of the proposed AMCEQ-SP algorithm

incorporating the penalty function is therefore given as

∇J(n) = ∇Jf(n) + λ∇Jp(n), (20)

where λ is a weighting factor. Since obtaining a closed-form

solution is challenging, in this work, we choose an arbitrary

value for λ.

4. SIMULATION RESULTS

We first examine the effect of λ on the convergence per-

formance of AMCEQ-SP using five synthetic AIRs, each

of length Lh = 2048, generated using the same simulation
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Fig. 4. Equalization performance of AMCEQ-SP and A-MINT in the pres-

ence of system mismatch Mm.

setup described in Section 2, and μ = 0.5. From the conver-

gence performance curves shown in Fig. 2 we note that when

λ = 0, i.e., the L1 norm penalty function is not applied, the

algorithm converges at a slow rate. With the application of

the penalty function, rate of convergence increases with λ.

The convergence performance of the proposed AMCEQ-

SP algorithm and A-MINT is next illustrated for various μ
using the same simulation setup. In this simulation, we have

selected, for A-MINT, τ = Lh/4 (which gave the best perfor-

mance as shown in Fig. 1.) With Lg = Lc and λ = 5× 10−4

for AMCEQ-SP, η(n) was computed for different step-sizes

and illustrated in Fig. 3. We note from this result that un-

like A-MINT with performance being limited by the choice of

τ AMCEQ-SP achieves good convergence performance with

η < 30 dB.

Equalization performance in the presence of channel es-

timation error is also illustrated using five recorded AIRs

obtained from the MARDY database [23]. The AIRs were

first downsampled to 16 kHz and subsequently truncated

to Lh = 2048. AIR estimation is simulated by perturbing

the AIRs using ĥm = (ILh×Lh
+ Em)hm, where Em =

diag{εm,0, . . . , εm,Lh−1}, m = 1, . . . ,M, and εm,i is a zero-

mean white Gaussian random sequence. Equalization of hm

was then achieved with the inverse filters estimated using ĥm

for different system mismatch Mm = 10 log10 σ
2
ε dB, where

σ2
ε is the variance of εm,i, i = 0, . . . , Lh − 1.

We illustrate, in Fig. 4, the variation of η with Mm at

n = 1 × 104th iteration for AMCEQ-SP with λ = 5 × 10−4

and A-MINT with τ = Lh/4. We have used μ = 0.5 for

both algorithms. These results show that, for both algorithms,

the equalization performance degrades with increasing sys-
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Fig. 5. Equalized response obtained for (a) AMCEQ-SP, and (b) A-MINT.
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tem mismatch. Compared to A-MINT with an arbitrarily se-

lected τ = Lh/4, AMCEQ-SP achieves better equalization

performance. The equalized responses estimated with both

algorithms for Mm = −20 dB are shown in Fig. 5. We

note that AMCEQ-SP with η = −15.6 dB achieves a d̂ that

is closer to a Dirac function compared to A-MINT which

achieves η = −5.4 dB only.

To further illustrate the performance improvement ob-

tained with AMCEQ-SP the energy decay curves (EDCs) [24]

obtained for h2, AMCEQ-SP, A-MINT and recently pro-

posed A-MCEQ [15] are depicted in Fig. 6. In this plot, good

equalization is exhibited by a low EDC value. Comparing

the EDCs it can be seen that AMCEQ-SP achieves better

reverberation suppression than A-MINT and A-MCEQ.

5. CONCLUSION

We proposed a new adaptive MCEQ algorithm. As opposed

to existing MINT-based algorithms which model the desired

response with an arbitrary delay the proposed AMCEQ-SP

algorithm converges to a solution with an appropriate de-

lay for the equalized response. Simulation results show

that AMCEQ-SP can achieve good equalization performance

even in the presence of AIR estimation error. The proposed

L1-norm constraint helps the algorithm to achieve fast con-

vergence.
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