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Abstract—Traditional ultrasound imaging takes into account
linear propagation only. However, new methods seek to exploit the
nonlinear properties of tissues, which create a specific contrast
source. Optimizing these methods require simulating the pressure
field in the media at a reasonable computational cost. This paper
details how using the Slowly Varying Envelope Approximation
(SVEA), a method coming from nonlinear optics, enables to
compute several harmonics generated by nonlinearity. This sim-
ulator is suited to media with a nonlinearity coefficient varying
in all 3 spatial dimensions. SVEA one-way field predictions are
compared with those of three other simulators up to the fifth
harmonic, showing a good agreement up to 1.1 dB depending on
the simulator. This method runs on desktop computers in less
than 8 minutes for a 128x128x512x400 discretization grid.

I. INTRODUCTION

Most clinical applications of ultrasound imaging are based
on linear propagation: a pulse with a given frequency is
sent out by the probe, propagates in the medium and af-
ter scattering a part comes back to the probe at the same
frequency. However, biological media exhibit a nonlinear
behaviour, which can be enhanced by the use of ultrasound
contrast agents: the returning ultrasound pulse contains more
frequencies than the one sent out and numerous harmonics are
present. Nonlinear ultrasound imaging seeks to exploit these
additional frequencies, as they can bring information about the
nature of tissues, or enhance the resolution. The development
of these techniques drives the need for simulation tools able
to help to optimize ultrasound setups, for instance by studying
many probe designs in a short time. The main approaches in
the ultrasound community are based on the finite difference
method [1] and the angular spectrum method (ASM) [2] [3].
The first one computes derivatives at each point of a 3D+t grid.
The second uses the Fourier Transform to represent the prob-
lem. This paper presents an extension of the ASM using the
Slowly Varying Envelope Approximation (SVEA), a method
coming from nonlinear optics, and details its implementation.
The following part describes the mathematical background of
ASM and SVEA and its implementation. Then, the results
from SVEA are compared to those of other simulators. Finally,
a discussion closes the paper.

II. MATHEMATICAL BACKGROUND
A. Angular Spectrum Method

The equation describing the nonlinear propagation of an
ultrasound wave of pressure p is the lossless Westervelt
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the Laplacian. The ASM relies on the 2D+t Fourier Transform
(FT) Fyy; of the field along spatial dimensions x and y and
the time dimension ¢. The FT separability gives
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with u being = or y.
Applying the FT to (1) and using the properties in (4) leads
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Because 3 does not change over time and only depends on
spatial dimensions,
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So using (6) and (4) on the right-hand side of (5) it can be
rewritten as
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where k2 = «’/cz — (ka? + k) is the squared projection of the
wave vector along the axis z for a wave of pulsation w and
wave vector projection (kg, k) in the (x,y) plane. A more
detailed derivation of this equation can be found in [4].
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When S = 0, the solution of (7) for forward-propagation
only is }
P =P, e %= (8)

with P,, = Fpy:(ps,) the Fourier Transform of the initial
transmitted pressure wave.

B. Slowly Varying Envelope Approximation

Let H so that 4
H = Pett=2 9)

H is the complex amplitude, also called envelope, of a
wave of vector (ky,ky,k.) and pulsation w. If there is no
nonlinearity in the medium and only forward propagation is
taken into account, this envelope remains constant along z.

Using definition (9) yields:

o%pP B 0’H
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So using (10) and (9), k? He~"*=* simplifies in (7) and it
becomes
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Under the assumption that the characteristic length of vari-
ation of H is high compared to /.,
0’H e i OH
022 * 0z
This is the Slowly Varying Envelope Approximation
(SVEA). It is widely used in nonlinear optics [5] [6] and has
the property of taking into account only forward-propagating
new harmonics. Since k, is in the right hand side of the
inequality (12), the approximation is better for waves propa-
gating in the direction of the axis z. With this assumption the
higher order derivatives can be neglected and (11) becomes:
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the solution of which is:
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Which can be used to get the pressure field at depth z:
p(2) = Frpp(H(z)e %) (15)

C. Discretization and Attenuation

Equation (14) lends itself to numerical integration through
an explicit Euler method. For a step size dz along z it consists
in iterating

+ iw?
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Up to this development, attenuation by the medium was
not taken into account since it is not modeled by (1), only
diffraction and nonlinearity were. Attenuation in biological
media depends on the frequency f = w/2x and is described

H(z+dz) = H(z) Fryi(Bp?)e™=*dz (16)

for monochromatic waves propagating along an axis u by the
empirical law [7]:

9p =—aof'p )

ou
which translates for H for a step dz, assuming waves are
paraxial and taking only attenuation into account, as

H(z+dz) = e_"‘”fvdzH(z)
A development to accurately extend this to non-paraxial waves

can be found in [8]. So at first order, with attenuation taken
into account (16) becomes

(18)
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D. Computer implementation

The above described discretization has been implemented
on CPU using the C++ language and the FTTW library [9]
to perform the FT. p,, depends on the probe parameters
detailed in Table I. The implemented algorithm is summed
up in algorithm 1.

Algorithm 1 SVEA implementation

H «—  Foyu(pz)
w
N +— ——dz
214;,210066L
p <_ pZ()
A — e oofldz
z <+ 0
while z < z,,,, do
z <+ z+dz

H + AH + NF,,(8p?)e*=*

D F;ylt(He_““zz)
Save p
end while

III. COMPARISON WITH OTHER SIMULATORS
A. Simulation tools

For comparison purposes, three other simulators were used:
the well known FieldIl simulator [10], which can not take into
account nonlinearity and is consequently used as a baseline
for the field at the fundamental frequency, the INCS simulator
by J. Huijssen [11] and the finite difference KZK simulator
by M. Voormolen [1], [12]. The latter uses the Kuznetsov-
Zabolotskaya-Khokhlov equation [13], [14] instead of the
Westervelt equation. A transmitted pulse at fundamental fre-
quency fo = 1 MHz and maximum pressure on the transducer
po = 1 MPa was chosen. The high pressure favors the
generation of harmonics. Fig. 1 displays the SVEA and KZK
field predictions for several harmonics in the plane normal to
the probe and their relative difference. The relative difference
d; between the ith harmonics of the SVEA and of the KZK

is estimated with

KZK _ .S
lp;*“" —p;

KZK | ,SVEA
D; + p;

VEA|

d; =2 (20)
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Fig. 1. SVEA (a,d) and KZK (b,e) predictions and relative difference (c,f) between the two simulators. First line corresponds to the first harmonic, second

line to the fourth.

d; is only displayed for pixels where py’V'F4 is over 10% of its

maximum value, because the field has a low intensity outside
the main beam and d; is then very sensitive to small absolute
differences between maximum pressures. Fig. 2 shows the
evolution of prEA, prCS, pEZK along the z axis. pf'1!,
the maximal pressure over time at the fundamental frequency
as computed by FieldIl is also shown. Probe and medium

parameters are given in Table I.

B. Evaluation

1) Axial profile: As Fig. 2 shows, the SVEA stays within
2.0 dB compared to the INCS for the fundamental frequency.
For the others harmonics, the predicted field is much higher
for small z and the gap increases with frequency. However, as
z increases and the field generated by nonlinear effect grows
stronger the discrepancy decreases: at z = 6.6 mm, the second
harmonic field has reached 10% of its maximum intensity and
the INCS and SVEA predictions are separated by 5.1 dB. For
the 5th harmonic, 10% of maximum intensity is reached at
z = 35 mm, where the difference between INCS and SVEA is
4.5 dB. For all harmonics, the difference is lower than 2.0 dB
at z = 80 mm.

The SVEA has a better fit with the KZK simulator than
with the INCS, especially for small z: at z = 6.6 mm, the
second harmonics are separated by 1.6 dB, at z = 35 mm, the
5th harmonics are separated by 3.7 dB. At z = 80 mm, the
difference is lower than 1.8 dB for all harmonics.

Compared to Fieldll, the SVEA stays within 1.1 dB for
z > 3 mm. Before this point, the Fieldll prediction exhibits a
sudden decrease in intensity not present with other simulators
which is likely a near-field artifact.

2) Relative difference: As seen in Fig. 1, the relative
difference between SVEA and KZK is higher on the edges
of the main beam where the intensity drops near 10% of the
maximum. In the main beam, d; is mostly under 30%. This is
coherent with the previous analysis of the axial profile, since
the discrepancy was higher where the pressure was lower.

C. Pratical aspects

The extraction of the pressure field in the different fre-
quency bands was performed using MATLAB (The Math-
Works, Natick, United States) by zero-phase filtering the field
with passband Butterworth filters of order 10 and of double-
sided bandwidth 1 MHz, at central frequencies fy to 5fy by
increments of fj, and then taking the maximum over time for
each pixel.

The SVEA simulation was performed on a standard laptop
(Intel core i7-3612QM @ 2.1GHz, 8GB of memory) with a
C++ program. With the high sampling mentioned in Table I,
the computation took less than 8 minutes.

IV. DISCUSSION AND CONCLUSION

The SVEA is an approximation and thus has a limited
domain of validity. However, one can keep track of (12)
to know if it is not justified, which is the case in the
presented simulation. The comparison between SVEA and
other simulators shows that in the regions where the intensity
of harmonics is strong the SVEA predictions are consistent
with the others. These regions are those of interest for clinical
applications since they present the strongest echoes: other
regions are hardly visible in harmonic imaging, since probes
have a limited sensitivity. The SVEA is also a flexible method,
since it allows for variations of the 3 parameter in all spatial
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TABLE I
SIMULATION PARAMETERS

Parameter Value
Pitch 245 pm
Kerf 30 um
Element height 6 mm
Number of elements 64
(z,y, 2) coordinates of focus (0,0,70 mm)
elevation 23 mm
apodization none
fo 1 MHz
Po 1 MPa
speed of sound in medium 1540 m.s~1
medium density 1000 kg.m—3
ap 0.025 Np.m—1.MHz 7
o7 2

number of discrete points in x, y, z and ¢ 128, 128, 400, 1024

dimensions, and can also deal with variations of ¢« and
~ in the z direction without changing the formalism: the
only change in Algorithm 1 is to recompute the attenuation
matrix A at each step. Thus, investigation of realistic media
is facilitated. Allowing these parameters to vary in = and y
could be done by using the hybrid ASM method proposed
in [8]. Additionally, probe bandwidth sets an upper limit on
the number of harmonics which can be recorded and renders
the clinical use of the higher frequency harmonics impractical.
The SVEA is however not limited to computing the harmonics
of one fundamental frequency, it can have other uses: for

Axial pressure profiles for harmonics 1 to 5 with the SVEA, INCS, KZK and Field II simulators

instance, a simulation using a pulse with two frequencies has
a predicted field with a spectrum with the sum and difference
frequencies and their harmonics as well as the harmonics of the
two fundamental frequencies. Finally, the SVEA is faster than
the KZK and the INCS, and computation times are on the order
of minutes. Consequently, it is possible to perform parameter
sweeps in an acceptable time. Since its implementation has a
similar architecture as the algorithm proposed in [4], which
benefited from a 10-fold speed increase when ported on GPU
[15], further developments are planned to use the NVIDIA
CUDA toolkit to increase the speed, and to integrate it in the
CREANUIS software [16] to perform image reconstruction.
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