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ABSTRACT 

A global solution to the enhancement and segmentation of 
ultrasound images is proposed that is operable in both low 
contrast and high contrast imaging scenarios. The solution is 
based on two optimization processes: one that minimizes 
error with respect to the original image while minimizing the 
number of edge contours (above the number expected by the 
known topology), and the second that maximizes edge 
fidelity. The maximization of edge fidelity is achieved by 
way of connected filters that operate on connected 
components of a threshold-decomposed image. To test the 
algorithm, an application in the ultrasound imaging of 
human blood vessels is explored. The results show 
significant improvements (8X to 50X) in a vesselness 
measure of the segmented vessels as compared to that 
yielded by a traditional speckle reduction technique and to a 
diffusion-based technique. 

Index Terms—speckle, contrast insensitive, area 
morphology 

1. INTRODUCTION

Reduction of speckle in ultrasound images is a challenging 
problem, which has been addressed for more than twenty 
years. As a result a number of speckle reducing filters are in 
place [1,2]. Modifications to the basic speckle reduction 
approaches have been proposed where presence of oriented 
shapes of particular nature are encouraged while smoothing 
the image in an iterative fashion [3]. Unfortunately, all these 
approaches use local neighborhood based processing, and no 
current method uses structural information for speckle 
reduction. Furthermore, these local approaches are contrast 
sensitive meaning that they preserve only high contrast 
regions. One such existing approach to speckle reduction 
updates partial differential equations in the form of 
anisotropic diffusion to smooth homogeneous regions while 
preserving boundaries [2,4,5]. This speckle reducing 
anisotropic diffusion (SRAD) approach is based on local 
image features (the local presence or absence of boundaries) 
and ignorestopology on a global level. Related approaches 
use local image statistics to remove speckle [6]. Some effort 
has been made to include global statistics, such as in non-
local averaging [7], but these averaging approaches do not 
consider object shape or topology. 

The problem is more complicated for ultrasound images 
obtained from the hand held devices. Speckle is more salient 
in images acquired by these portable devices due to limited 

power and limited computational resources.In this paper we 
discuss the processing of ultrasound images obtained from 
hand held devices where the device is placed flat and 
coplanar with the imaged tissue (in C-mode). The objective 
of our ultrasound image processing is to retrieve the 
horizontal cross-sections of a vessel imaged by the 
ultrasound device so that a 3D visualization of the vessels 
can be made. Such a 3D segmentation and visualization will 
enable phlebotomy applications such as needle placement in 
venipuncture. A typical ultrasound image obtained from the 
hand held device is shown in Fig. 1(a). Here, the 
superimposed blue lines are indicative of vessel boundaries.  

In contrast to methods that smooth or refrain from 
smoothing based on gradient magnitude (or some other local 
measure such as coefficient of variation), the method 
presented here attempts to retain object structure even in low 
contrast regions. We believe that the contrast invariance in 
segmentation is a key contribution of this work. Therefore, 
our new approach to speckle reduction should give equal 
importance to the high and low contrast regions however 
with the overall objective of reducing the number of edges as 
far as possible. At the same time, the enhanced image should 
be as faithful as possible to the original image.  

One potential solution path is to follow approaches similar 
to the minimization of total variation [8,9]. In this context, 
promising results have been obtained in smoothing images 
with the constraint of simultaneous reduction of number of 
edges present in the image [10,11]. We utilize a priori 
information about vessel structure in the form of connected 
components to produce a contrast-insensitive enhancement 
and segmentation. In this regard, we have applied area 
morphology in the form of connected filters [12]. 

In Section 2, we present the methodology followed by the 
results and conclusions in Sections 3 and 4, respectively. 

2. METHODOLOGY 

2.1. Approach to Optimization 

With this background, we propose a discrete minimization of 
� �� � ����	
�  subject to the constraint that �
����� � �� �
�, where k is the number of desired edge points in the 
processed image I. The minimization forces the solution� to 
resemble the observed image �� in an iterative fashion for 
every pixel � 
 �. The edge point strength is defined by 
����� � ��� ��� �� � ��� ��� ���The constraint with an upper 
bound on edge count serves our primary objective in 
optimization as stated earlier. The minimization process has 
no bias towards high or low contrast regions, instead 
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manipulates the resultant number of edges from the image. 
However we will show that we do not need such an explicit 
declaration of � in our minimization process. In addition to 
encourage vessel segmentation, we would like to force only 
long connected edge points to be present as the vessel 
boundary. Therefore, at every step we would like to 
maximize � �������	
�����  which sums the edge strength at 
every pixel p that belongs to the edge e of the connected 
component  !.

The edges of the connected components are the image 
level lines and can be obtained from the boundary of the 
binary connected components of image level sets. These 
image level sets are computed via threshold decomposition 
of the image, �" � �� # $�, where the threshold t ranges 
typically from minimum to maximum image intensity 
present in the image in steps of unity or any desired 
quantization step. Again this process is contrast insensitive 
providing equal importance to higher or lower contrast 
region.Therefore, we would like to minimize 
� �� � ����	
� � � �������	
����� , �
����� � �� � �.         (1) 

Equation (1) has a data fidelity term, � �� � ����	
� , an 
edge fidelity term � �������	
����� , and a constraint on edge 
point counts. It is difficult to minimize (1) in a 
straightforward fashion. The combination of data fidelity and 
edge fidelity makes the minimization uncertain as no 
inference about its convergence can be derived. On the other 
hand the edge point constraint term counts the number of 
non-zero edges.Combining terms, it is not possible to use 
standard gradient descent based minimization in such a 
scenario. However, the entire minimization can be 
decoupled into multiple steps. First, minimization of the data 
fidelity term and edge fidelity term can be split into two 
different steps. The combination of data fidelity term and the 
remaining constraint part can be expressed as 
� �� � ����	
� � %&��
����� � ���,                                    (2) 
where, %& is the weight controlling image smoothing in 
terms of minimization of number of non-zero edges. 
Therefore, the overall minimization of (1) will continue in 
two steps: 
a) Minimization of (2) followed by 
b) Maximization of edge fidelity � �������	
����� .

Minimization of (2) is a well-known splitting problem 
separating the data fidelity term and the constraint part 
[10,11,13]. The splitting introduces a common minimizer 
which can be minimized separately both with the data 
fidelity part and the constraint part. The common minimizer 
is effected introducing dummy variables '( and ')
corresponding to edge gradients along x and y. In the first 
part of splitting (2), the difference between the actual edge 
gradients and the dummy variables are minimized along with 
the minimization of data fidelity term. 

*& � � +�� � ���� � %� ,-��� ��� � � '(.� �	
�

/��� ��� � � ')0
�01,                                                            (3) 

with %� being the weight for the common minimizer. The 
iterative minimization of (3) yields a smoothed image. The 

convergence of (3), which is the sum of quadratics, is 
guaranteed. In the second part of splitting (2), the common 
minimizer is combined with the minimization of the count of 
the number of non-zero dummy variables ('(,'))
corresponding to edge gradients along (x,y) directions [10]. 

*� � %� ,-��� ��� � � '(.� � /��� ��� � � ')0
�2 �

33333333333%45�'(6 ')�.                                                                (4) 
The function 5�'(6 ')�is an indicator function which yields 1 
for -�'(� � 7')7 � �., else 0. The importance of 5�'(6 ')� is 
weighted by %4. The energy represented by (4) can be 
minimized at every image point and after every iteration, the 
minimization returns a set of -'(6 '). values for the image I.
The minimization of *� is guided based on the -'(6 ').
values. Dividing both sides of (4) by %�, if -'(6 '). � ��6��,
*� takes the value of ���� ��� �� � ��� ��� ���. If -'(6 '). 8
��6��, *� takes the minimum value of �%4 %�� � if -'(6 '). �
-��� ��� �6 ��� ��� �.. Therefore, for a non-zero edge point in 
an image, if the edge gradient ���� ��� �� � ��� ��� ��� is 
less than some preset value of �%4 %�� �, then *� has already 
achieved minima for that edge point. We discuss how 
�%4 %�� � value is initialized and updated in Section 2.2. 

We have implemented the maximization of edge fidelity 
term, � �������	
����� , using area morphology based filtering. 
First, we observe that any grayscale image can be 
represented by threshold decomposition, i.e., a stack of 
binary images representing regions meeting a threshold. For 
K intensity levels, K-1 such binary images are required. An 
interesting class of filters, called connected filters, can be 
applied to each binary image [14,15]. These filters are 
capable of only removing or retaining a connected 
component as a whole. Thus, edges in an image are 
preserved as edges are simply retained or removed from the 
image. 

There is neither a theoretical convergence result of the 
algorithm nor a numerical convergence that can be 
absolutely characterized. However, minimizing the number 
of non-zero gradient magnitudes in (4) corresponds to the 
minimization of the L0 semi-norm as done in case of 
graduated non-convexity based approach [11]. 

The problem of encouraging longer edges of the 
connected component representing a homogeneous region in 
an iterative fashion is treated as the elimination of connected 
components of the image having less than a specific area 
[12]. The overall speckle removal algorithm works as 
follows. 
a) The algorithm starts with an initial �%4 %�� � value and it 

is reduced by a fixed rate at every iteration. 
b) If -��� ��� �9 � ��� ��� �9. : �%4 %�� �, then set 

-��� ��� �6 ��� ��� �. � ��6�� as *� reaches minima at 
these image sites. 

c) Reconstruct image I minimizing (3) where some of the 
edge points of I are eliminated in Step (b) above [10]. 

d) Find connected components in reconstructed I for both 
�"; � �� # $� and �"< � �� : $� for t ranging from 
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minimum to maximum image intensity in steps of unity. 
Eliminate connected components less than a preset 
value. 

e) The iteration continues till a minimum value of ratio 
�%4 %�� � is achieved or a single connected component is 
retained in the segmented image. 

The final segmentation is obtained after threshold [16] of the 
speckle reduced image obtained in Step (e) above. 

2.2 Estimation of Parameters 

Minimization of (4) is controlled by the ratio �%4 %�� �. The 
initial image contains maximum number of edge points with 
wide variations in edge strength.Therefore the ratio �%4 %�� �
should be set at maximum in order to eliminate most of the 
undesired edge points while minimizing (4). To initialize the 
ratio �%4 %�� �, we have calculated an edge strength value 
= � ���� ��� �� � ��� ��� ��� that separates initial edge 
strengths into two classes of strong and weak edges with 
maximum inter-class variance between strong and weak 
edge classes following [16]. So, using initial �%4 %�� � value, 
we have ignored all image edge points less than = as in Step 
(b) above. With the progress of minimization, the inter-class 
variance between strong and weak edge points is expected to 
decrease, so as the value of �%4 %�� �. Similar to any 
annealing schedule, in each iteration we have reduced the 
value of �%4 %�� � by 50% until the ratio �%4 %�� � reached a 
stationary level. We define that the stationary level is 
achieved when the difference of two consecutive �%4 %�� �
values is less than 0.0001. In the next section we have 
observed the effect of different reduction rates of �%4 %�� � on 
the inter-cluster distance, the clusters being the vessel and 
the background. 

The choice of scale for eliminating connected components 
for Step (c) above is obtained from the histogram of sizes of 
connected components of the image. This range of scale or 
size of connected components corresponds to the expected 
size of the blood vessel that we like to segment. In the 
following, we present results on ultrasound images of human 
blood vessels. 

3. RESULTS AND DISCUSSIONS 

In this section we show the experimental result with two sets 
of data. Figs. 1(a) and (d) show two 2D C-mode images of in
vivo sample. Figs. 1(b) and (e) are the corresponding images 
after speckle reduction as detailed in Section 2. Finally, Figs. 
1(c) and (f) are the segmented images following [16] on 
Figs. 1(b) and (e) respectively. The �%4 %�� � ratio value is 
initialized at 0.72 based on the technique described in 
Section 2.2. All the connected components less than size 
pixels are removed from the image in every iteration (where 
 is the smallest vessel area; in our images  =1000). A 

single connected component is obtained when the �%4 %�� �
ratio has also achieved stationary value (~25 iterations in 
these trials). The MATLAB R2011a implementation of the 

proposed segmentation on 240x400 ultrasound image takes 
~29 secs in a 32 GB Dell Precision 3.4 GHz quadcore 
workstation.

The images of Fig. 1 are the first and the fourth slices 
within a larger sequence of slices where the vessel is 
relatively prominent for 3D reconstruction. The stack of all 
seven 2D images is shown in Fig. 3(a). The stacks are 
created after placing 2D slices along z-axis. However, for 
improved visualization, twenty binary 2D slices are 
interpolated in between every pair of actual 2D slices.  

Given the contour points of a segmented vessel (for 
example, vessels in Figs. 1(c) and (f)) in an actual slice, the 
corresponding points of the vessel in the next slice are 
determined based on the minimum Euclidean distance. The 
twenty intermediate points on a line along z-axis joining the 
corresponding points of two consecutive 2D slices generate 
the twenty interpolated slices for visualization. However, for 
reconstructing the 3D vessel shape, only the seven original 
2D slices are stacked to create a 3D binary image. The vessel 
shape is then reconstructed from the 3D skeleton of the 
stacked image slices following [17] as shown in Fig. 3(b). 
For visualization, we have used 1-pixel thick cylinders to 
reconstruct the 3D vessel. However, the actual dimension in 
cm can be retrieved from the calibrated z-dimension values 
of the slices. 

Figs. 2(a) and (d) show slices from another set of 
ultrasound images for which intermediate and segmentation 
results are shown in Figs. 2(b) and (e) and Figs. 2(c) and (f) 
respectively. For this image, the initial �%4 %�� � ratio is 0.42 
and the number of iterations is 20 while the connected 
component scale is identical with that of Fig. 1. The 
corresponding 3D stack image and the 3D reconstructed 
vessel is shown in Figs. 3(c) and (d) with identical 
specifications as in Figs. 3(a) and (b) respectively. 

To compare the proposed method with the competing 
approaches, we have shown speckle reduced results of Fig. 
1(a) in Figs. 4(a) and (b) using Lee filter [1] and SRAD [2] 
respectively. The corresponding segmentation results [16] 
are shown in Figs. 4(d) and (e) respectively. For Lee filter 
[1] we have used 5x5 masks for averaging with 0.5 as the 
value of the coefficient of variation. For SRAD [2], we have 
chosen 400 iterations with 0.02 as the smoothing time step. 
Clearly, the segmentation results shown in Fig. 1(c) using 
the proposed approach improve upon those shown in Figs. 
4(d) and (e) on a qualitative basis.  

In order to compare the performance of the proposed 
technique quantitatively, we propose vesselness measure as 
extraction of the blood vessel as cylinder as shown in Figs. 
3(b) and (d) is the ultimate objective of this proposal. The 
vesselness measure finds the error in fitting smooth polyline 
to the segmented inner boundary of the vessels shown in 
Figs. 1(c), 1(f), 2(c), 2(f) and similar such images. The 
numerical score of vesselness measure is shown in Table 1.  

We have extracted edges of the vessel and used linear 
regression to fit lines to these edges. The residual sum of 
fitting error is calculated for all the edge segments and >�
coefficient of determination is calculated. The >� value, 
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