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ABSTRACT
Crest line extraction has always been a challenging task in
image processing and its applications. It is possible to de-
tect ridges and valleys in images using second order filters.
In order to estimate crest lines of variable widths, a multi-
scale analysis of the image is required. In this paper we pro-
pose a new ridge/valley detection method in images based on
the difference of rotating Gaussian semi filters adapted in a
multi-scale process. Due to the directional filters, we obtain
a new ridge/valley anisotropic detector enabling very precise
detection of ridge/valley of varied widths. Moreover, as the
detector filters compute the two directions of crest lines, even
highly bended crest lines are correctly extracted. Numerical
comparisons with other oriented Gaussian filters and results
on real images validate the interest of this method.

Index Terms— Crest lines, multi-scale, steerable filter.

1. CREST LINE EXTRACTION

Crest lines or curves in an image represent narrow ridges or
valleys in the image surface. They may define thin nets in-
side an image describing roads or rivers in satellite images,
blood vessels in medical images or roots in underground im-
ages. Therefore, finding these dense and thin structures is an
important issue in image processing.

In a grey level image I , ridges are maxima, valleys are
the minima [1]. Indeed, considering the image surface S, in
the cartesian space, the following equation defines all pixel
coordinates: ~S(x, y) = (x, y, I(x, y))t. Let ST (x, y) be the
tangential plane to the surface in all points where:

ST (x, y) =
{

(1, 0, Ix(x, y))t, (0, 1, Iy(x, y))t
}
, (1)

with (Ix, Iy) the partial derivatives of I respectively along the
x and the y axis. Ridges and valleys are given by the points
where the values of ~S(x, y) are maxima or, respectively, min-
ima in the orthogonal direction to the curve at (x, y).

The literature presents several methods for ridges and val-
leys detection. In image filtering, convolving I with the sec-
ond derivative of the Gaussian filter in two dimensions, and
then removing the non local maxima in the direction maxi-
mizing the variance allows a detection of crest lines [2]. Also,

the Hessian matrix consists of the second partial derivatives
of the image after convolving with a Gaussian smoothing ker-
nel. Computation of the orthogonal direction of a curve for
a pixel can be tackled by finding the eigenvector that corre-
sponds to the maximum absolute eigenvalue of the Hessian
matrix [3] [4] [5] or the Weingarten endomorphism matrix [6]
of the considered pixel. However, results obtained by these
approaches can present increased false detection rate in noisy
images. It is mainly because the high pass filtering used for
the second derivative is sensitive to the noise level.

In order to detect oriented contours or ridges, Freeman
and Adelson proposed to use oriented Gaussian derivative
kernels called steerable filters [7]. Thus, the second order
oriented Gaussian becomes a crest line detector as illustrated
in Fig. 1(a). As represented in Fig. 1(c), the second par-
tial derivative of anisotropic Gaussian kernels introduced by
Perona [8] constitutes a good estimator of ridges and valleys
(note that the Difference of Oriented Gaussian (DOG) with a
standard deviation ratio of 1.6 allows a crest lines estimation
because it approximates well a second derivate of Gaussian
(Laplacian of Gaussian -LoG- [9] [10]). These oriented ker-
nels characterize the pixels belonging to a contour by the fact
that their oriented energy is maximum in the orthogonal di-
rection to their local orientation. Afterward, Jacob and Unser
[11] have developed special families of edges and ridges de-
tectors based on Gaussian derivatives which are derived from
the criteria used by Canny to design his famous edge detector
[12]. In particular, second and forth order Gaussian deriva-
tives are presented for the extraction of crest lines (Fig. 1).
These criteria are expressed under an integral form and as-
sembled into a quadratic criterion, whose minimization with
a Lagrange multiplier method leads to an eigenvalue calculus.
These approaches are able to correctly detect large oriented

(a) Isotropic (b) Isotropic (c) Anisotropic (d) Half anisotropic
Gaussian, order 2 Gaussian, order 4 Gaussian kernel Gaussian kernel

Fig. 1. Different 2D crest line detectors. For (c) and (d) are
used the following ratios: λ2/λ1 = 1.6 and µ/λ1 = 5.
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linear structures like straight lines. For anisotropic filtering
methods [8], the robustness against noise depends strongly on
the two smoothing parameters of the filter (length and width).
If these parameters increase, the detection is less sensitive to
noise, but thin crest lines are considered as noise, and, as for
the conventional crest line detectors, the estimated position
of the line moves farther away from the true position. More-
over, as shown in Fig. 3 (b), junctions and corners are not
well detected with these different methods [13]. Indeed, the
detector value is greater near the corner than on the corner it-
self [14]. Consequently, the precision of the detected ridge or
valley points decreases strongly at corner points and for non
straight object contour parts.

Based on difference of two half Gaussian smoothing ker-
nels, a new anisotropic crest line detection method has been
developed in [14]. This approach is also able to detect junc-
tions and corners thanks to elongated and oriented filters in
two different directions (see Fig. 2). Therefore, smoothing
with rotating filters means that the image is smoothed with a
bank of rotated half anisotropic Gaussian kernels [15] [16]:

G(µ,λ)(x, y) =
1

2πλµ
·Hy

(
e
− x2

2·λ2
− y2

2·µ2

)
, (2)

where (x, y) are pixel coordinates and (µ, λ) the standard-
deviations of the Gaussian filter. Contrary to [8], as we need
only the causal part of the filter (illustrated on Fig. 1(d) and
2), we simply “cut” the smoothing kernel by the middle, this
operation corresponds to the Heaviside functionHy along the
y axis [15]. Using a discrete rotationRθ of angle θ of the orig-
inal image I , by convolution [17], we obtain a collection of
directional smoothed images Iθ = (Rθ · I)∗G(µ,λ). In a sec-
ond step, we apply an inverse rotation of the smoothed image
and obtain a bank of 360◦/∆θ where ∆θ represents the step
between each discretized orientation. This stage is repeated
twice with filters of different widths but of the same length
before applying the difference: D(x, y, θ) = G(µ,λ1)(x, y)−
G(µ,λ2)(x, y), with λ2/λ1 = 1.6 [9] [10]. Thus, we ob-
tain for each pixel a signal D(x, y, θ) which corresponds to
a scan in 360/∆θ directions [14]. Then a ridge/valley opera-
tor Σ(µ,λ1)(x, y) is defined as:

Σ(µ,λ1)(x, y) = D(x, y, θM1) +D(x, y, θM2)

+D(x, y, θm1) +D(x, y, θm2) (3)

where θM1
, θM2

are the directions of the local maxima of the
function D (see Fig. 2) and θm1 , θm2 the directions of the
local minima. Conditions of detection are as follows:

if Σ(µ,λ1)(x, y) > Σth, the pixel P belongs to a ridge,
if Σ(µ,λ1)(x, y) < −Σth, the pixel P belongs to a valley,

where Σth > 0. Finally, ridges can easily be extracted com-
puting local maxima of Σ(µ,λ1)(x, y) in the η direction, bi-
sector of (θM1 , θM2) and valleys computing the minima of
Σ(µ,λ1)(x, y) in the η direction, bisector of (θm1 , θm2) (see
Fig. 2). Thereafter is developed the method in a multi-scale
approach.
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Fig. 2. Difference of half rotating smoothing kernel descrip-
tion and parameters. It computes the two directions of a curve
even if they are discontinuous or highly bended.

2. MULTI-SCALE THIN NET EXTRACTION

2.1. Detection of Crest Lines of Different Widths

Crest lines represent narrow objects in an image, however,
these objects happen to have different widths. Thus, second-
order derivatives techniques can be commonly implemented
in a multi-scale framework to detect ridges or valleys of dif-
ferent sizes. The choice and number of scales is especially im-
portant since too small scales emphasize small details, while
producing spurious responses to noise or texture, tangent ob-
jects and other features. Otherwise, too large scales deform
original objects at detection rounding corners and by loosing
details. Scale selection is most often performed by choosing
the maximum principal curvature of the image surface among
the Gaussian kernels of different scale parameters. Accord-
ing to a function depending on the scale, it is possible to
weight the second-order Gaussian filter responses such that
this weighted response is maximized when the true scale of
the structure is present. In the literature, various measures of
crest lines strength have been proposed concerning isotropic
Gaussian filters [3] [6]. Oriented Gaussian filters [7] [8] [11]
can be performed in multi-scale framework in order to de-
tect objects of different sizes. Thus, at each pixel of coordi-
nates (x, y), the selected scale W(x, y) is calculated as the
maximum response of the oriented operator Fθi,σj (x, y), an
oriented filter response, at the orientation θW(x, y) for the
discrete sampling of the angle and the scale domain [18]:

W(x, y) = max
j

(
max
i

(
Fθi,σj (x, y)

))
,

θW(x, y) = arg max
θi(x,y)

(
Fθi,σj (x, y)

)
,

(4)

where θi(x, y) represents the ith discrete orientation of the
filter at a scale σj maximizing Fθi,σj (x, y). As seen in
the previous section, σj = λ1 for anisotropic DOG filter.
Then, crest lines can be extracted computing local maxima of
W(x, y) in the direction perpendicular to θW(x, y). These
different multi-scale techniques, isotropic [3] [6] [7] [8] [11]
or anisotropic [18] suffer from the problem pointed out in the
previous section i.e. they all fail at level of corners.
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Based on the analysis of the image singularities, a steer-
able, multi-scale singularity index for detecting crest lines has
been developed [19]. As we will show in the next section, this
approach, although robust against light noise, yields many
false detections in textured or heavy noisy images.

2.2. Multi-Scale Extraction of Crest Lines using Differ-
ence of Oriented Half Gaussian Kernels

In order to detect ridges and valleys of different sizes with
their associated corners, being robust to noise and prevent-
ing false detection in presence of texture, we propose to adapt
the last method based on half Gaussian kernels presented in
Section 1 [14] in a multi-scale approach. On one hand, the
ratio µ/λ1 must not be so large to enable the detection of
bended and faint crest lines (illustrated in Fig. 3 (c - d)). On
the other hand, a too short kernel is not robust against noise
and does not extract correctly discontinuous lines in the im-
age [14]. For that purpose, fixing µ/λ1 = 5, preserving the
ratio λ2/λ1 = 1.6 (diagrammed in Fig. 4(a)), combining eq.
3 and eq. 4, eventually noting Σ(µ,λ1)(x, y) = Fθi,λ1

(x, y),
we achieve a multi-scale analysis of the image, computing
the maximum response of the anisotropic half Gaussian ori-
ented filter with different scale parameters. Note that in eq. 4,
η(x, y) replaces θi. Thus, from eq. 4 and η(x, y), crest lines
can easily be extracted computing local maxima of W(x, y)
in the direction η(x, y) followed by a hysteresis operator.

In a pixel precision process, as shown in [6], the opti-
mal scale of the crest line’s width called w (i.e. the number
of pixels) is λ1 = w/(2

√
3). The smallest crest line width

corresponds to one pixel, but Shannon’s theorem states that
the sampling frequency must be greater than twice the high-
est frequency contained in the signal, so the smallest starting
scale corresponds to λ1 = 0.58. Then, we can fix the scale
variation by ∆λ1 = 1/(2

√
3) ≈ 0.29.

3. EVALUATION, RESULTS AND CONCLUSION

3.1. Evaluation and Comparison

In order to carry out some quantitative results, we have con-
ducted a number of tests using multi-scale filters with an im-
age of wheat root system including valleys of different widths
and sizes. The binary image in Fig. 4 (a) contains normally
only one connected component corresponding to the root sys-
tem. The small regions disconnected from the greater are

(a) Image, 156×112 (b) λ1=1, µ= 5 (c) λ1=1, µ=5 (d) λ1=1, µ=10

Fig. 3. Crest line extraction using: (b) full anisotropic Gaus-
sian kernels and (c - d) half Gaussian kernels.

suppressed. The (remaining) connected component is skele-
tonised, i.e. reduced to single-pixel-wide shapes by a well-
known thinning algorithm [20]. The skeleton is the almost-
8-connected-pixel line of local maxima of the distance-to-
component-border function. The dissimilarity between two
pixel lines - skeleton, ridge lines, medial axis, etc - is given
by the sum of their differences, i.e. the number of pixels of the
first line which are not in the second. The pixel-to-pixel com-
parison is done in a 3×3 neighborhood centered successively
on the position of the first line pixels. For each point (i, j) of
the first line must find a point of the second in the 3×3 neigh-
borhood centered on the (i, j) position. The dissimilarity is
increased by one each time no point is found. The introduc-
tion of neighborhood allows comparing lines with different
pixel connectivity and small local variations. The dissimilar-
ity factor is obtained dividing the counted differences by the
number of the first line pixels.

In the case of the comparison between a F line to a given
R reference line composed from N pixels, the (factor of) dis-
similarity allows evaluating the effectives of the true positive,
false positive and false negative classes used in the perfor-
mance [21] or sensitivity [22] functions which often charac-
terize the produced results. The true positive are defined by
the similarity between the two lines i.e. the complement to N
of the dissimilarity, the false positive (resp. false negative) by
the dissimilarity between R and F (resp. F and R).

With these functions, we analyzed the effect of the several
multi-scale oriented crest line detectors on the reference im-
age corrupted by a Gaussian noise, an uniform white noise or
adding texture. The uniform noise and the texture are added
on the original image (shown in Fig. 4) using the formula:
Im = (1 − L) · I0 + L · IN , where I0 is the original image,
IN an image of texture or random uniform noise and Im the
resulting corrupted image.

Fig. 5 shows the relative variation of effectives of the class
affecting the performance really ; the results are obtained by

Y

X1 2( , (
(a) Multi-scale half kernel evolution (b) Original image

(c) Texture (d) 0.35 · I0 + 0.65 · IN

Fig. 4. Addition of texture on a binarized image 600×903.
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Fig. 5. Percentage error evaluation of image in Fig. 4(a).

several approaches [7] [8] [11] adapted in multi-scale (using
19 scales, see eq. 4 and section 2.2), our method and the
multi-scale singularity index [19] in function of the texture
level (i.e. the value of L) or the value of the Gaussian noise
standard deviation. Evaluation of the different methods on an
image corrupted by an uniform noise is similar with the addi-
tion of texture (multi-scale singularity index approach brings
a little better result with uniform noise). Steerable Gaus-
sian filters of order 2 or 4 achieved the best results when
Im is not much corrupted, however, false negative and false
positive points increase if the pollution becomes too heavy.
Both of these methods produce interesting results in images
containing small noise or texture level because they allow a
detection of short crest lines, contrary to anisotropic filters
which must have a standard deviation of filter’s width five
times smaller than its length (i.e. µ/λ1 = 5). Moreover,
steerable anisotropic Gaussian filter shows a lot of false posi-
tive points, unlike half Gaussian filters which achieve always
the less false negative points detection. Furthermore, the pro-
posed method performs better in the presence of a heavy cor-
ruption of Im in terms of false positive point extraction.

3.2. Result on Real Images and Conclusion

In order to validate our approach, we have applied our multi-
scale filter on real images. Fig. 6(a) represents an image of
a river delta captured by a NASA’s standard spatial observer,
here, we aim to extract all the arms of the river (the wide as
the thin). We use 30 scales for each method adapted in multi-
scale [7] [8] [11] and ours. Steerable filter methods with full
Gaussian kernels are not able to extract all the streams, espe-

(a) Original image, 384×384 (b) Steerable filters of 2nd order [7]

(c) Steerable filters of 4th order [11] (d) Multi-scale singularity index [19]

(e) Steerable anisotropic filters [8] [18] (f) Oriented half Gaussian kernels

Fig. 6. Multi-scale extraction of river delta.

cially when they are thin. The texture or the acquisition noise
create false ridge detections for these methods. Our algorithm
extracts almost all the different streams of all widths. For ex-
ample, on Fig. 6(f), all the detected thin ridges, even bended,
disappear under the red lines (i.e. under the detection).

This method obtains although promising results on large
image databases of underground roots and retina medical im-
ages. Results on real images validate our method, which is a
precise and a robust multi-scale detection approach of ridges
and valleys. Next on our agenda is to adapt our method to 3D
segmentation of blood vessel [23] and medical images [24].
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