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ABSTRACT

This paper considers a joint learning algorithm of foreground
region labeling and depth ordering for 3D scene understand-
ing. Given an object-level segmentation, the proposed al-
gorithm classifies each region as either foreground or back-
ground while simultaneously infers the relative depth orders
between every adjacent region pairs. For this, we consider
a graph where regions are considered as nodes while bound-
aries between adjacent regions as edges, and the problem is
formulated as jointly assigning binary labels to every nodes
and edges via maximizing a unified linear discriminant func-
tion, under the constraints that make the resulting depth order
to be always physically plausible. Instead of inferring region
and edge labels separately, we infer them jointly by group-
ing them as a single variable referred to as triplet. Then, the
problem is reformulated as multi-class triplet prediction to pe-
nalize the inconsistent labeling of regions and edges in a soft
manner. As the discriminant function is linear, the parame-
ters can be learned with structured support vector machine(S-
SVM), and efficient inference using linear programming re-
laxation is possible. Experimental results show that the pro-
posed joint inference algorithm improves both foreground re-
gion labeling and depth ordering performances.

Index Terms— Figure/ground, Depth ordering, Fore-
ground region labeling

1. INTRODUCTION

Depth estimation is one of the great challenges of computer
vision. For the past years, the study of depth estimation has
been focused on inferring the exact depth value based on
multi-view images [21] and motion cues[2, 17]. However,
with only a single image, this task is difficult. Fortunately,
a single image depth cues such as occlusion and geometric
information make it possible to infer the relative depth-order
among the objects. It has been reported that relative depth
information is very useful to handle high-level vision tasks,
such as salient object detection [15, 8] and 3D reconstruction
for scene understanding [6, 9].

Most previous approaches have been focused on figuring
out which side owns the boundary by using variety of local
cues from the contour and the T-junction structure. This cues

are determined by convexity, lower region, parallelism, etc.
[7, 18, 16, 14, 12, 5] However, estimating the depth order
from junction or boundary has natural flaws without consid-
ering characteristic of foreground-background configuration.
One of the trivial characteristic of relative depth order is that
background region such as sky, ground, etc., is always located
at backmost of the image. Geometric information of a certain
region can help to understand the relative depth configuration
between adjacent regions. Meanwhile, when estimating the
region label, the pairwise relative depth order between adja-
cent regions enforces its region label to be inferred correctly.
Thus, depth ordering and foreground region labeling create
synergy when they are conducted simultaneously.

Related works: Among the previous works for depth or-
dering, Hoiem et al [9] has recieved considerable attention.
They analyze the effect of surface layout confidences on infer-
ring relative depth order among the objects. The performance
get a significant improvement with the help of geometric
confidence cues. However, once geometric confidence is esti-
mated, the result of relative depth ordering strongly depends
on the geometric confidence accuracy. As aforementioned,
relative depth ordering and region labeling can assist each
other, so the performance of each task is expected to be im-
proved when the two tasks are conducted jointly.

Contribution: To address this issue, we adopt joint learning
framework to reason about depth ordering and foreground re-
gion labeling with the hope of enhancing the performance by
sharing correlated information between them while maintain-
ing physically reasonable configuration. The problem can be
interpreted as assigning binary labels on every boundary and
region. It is naturally formulated as an integer programming
with the constraints that make the predicted labels to conserve
the global consistency between depth order and region labels.
However, it is difficult to design such constraints between re-
gion and boundary labels as linear inequalities, which makes
LP not available. To cope with the above problem, we intro-
duce an algorithm where we group three variables correspond
to an adjacent region pairs and a boundary in between, and
jointly assign binary labels to them. For this, we define a
triplet variable that consists of above three variables, and re-
formulate the problem as multi-class triplet prediction on ev-
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Fig. 1. Undirected graph on segmentation.

ery boundary. Instead of manually defining hard-constraints
between region and boundary labels, the proposed algorithm
with triplet prediction allows us to automatically enforce the
consistency existing in the training data during the learning
process. The labeling process is formulated as maximizing a
linear discriminant function which can be solved efficiently
by LP relaxation. In addition, the linear discriminant func-
tion takes an advantage of large-margin parameter training
using structured support vector machine(S-SVM) [20]. It
efficiently learns optimal parameters for multi-class triplet
classifier offering good generalization.

2. JOINT FRAMEWORK VIA MULTICLASS
TRIPLET PREDICTION

Given a segmented image that conserves occlusion boundary,
the proposed algorithm simultaneously infers physically-
plausible-depth-ordering and foreground-region-labeling.
For this, we consider an undirected graph G = (V, E) as
shown in Fig. 1. Here the nodes are the regions and the edges
are the depth order which needs to be predicted. From a seg-
mented image X composed ofN regions {xi}Ni=1 and bound-
aries between regions such that E = {(i, j)|∀j ∈ N (i) ∧ i =
1, . . . , N}, the relative depth order B = {bij |∀(i, j) ∈ E} ∈
{0, 1}|E| and the region label R = {ri|i = 1, . . . , N} ∈
{0, 1}N need to be determined such that bij = 0 when xi is
located in front of xj ; otherwise, bij = 1. When xi is in the
background then ri = 0; otherwise, ri = 1. A linear discrim-
inant function to measure the quality of the depth-order and
the geometric relationship in an image is defined as follows:

F (X,B,R;w,v)=
∑

(i,j)∈E

D(xi, xj ;w)bij +
N∑
i=1

E(xi;v)ri

=
∑

(i,j)∈E

〈w, φij(xi, xj)〉bij +

N∑
i=1

〈v, ψi(xi)〉ri

= 〈θ,Φ(X,B,R)〉 (1)

Here, D(xi, xj ;w) is parameterized by w and measures
which region is front such that a large negative value means
region xi is front while a large positive value means region
xj is front. while E(xi;v) is parameterized by v and be-
comes negative when xi is foreground, positive when xi is
background region. φij and ψi represent the edge feature and
region feature vector respectively.

segment Relative depth order bij
xi xj inval val val val val val val inval
x1 x2 0 0 0 0 1 1 1 1
x2 x3 0 0 1 1 0 0 1 1
x3 x1 0 1 0 1 0 1 0 1

Table 1. Label validity for cyclic depth order from the graph
in Fig. 1. ’0’ means ith segment is front and ’1’ means jth
segment is front.

Each binary label in a given graph must satisfy the
physically-plausible condition. As shown in Table 1, there
exists valid cases for proper figure/ground relationship be-
tween three adjacent regions for physically-plausible depth
ordering. The constraint between edge labels bij can be
mathematically formulated as follows:

Definition 1 (Valid depth order relationship) Given a junc-
tion J composed of three nodes xi, xj and xk such that any
of its pair is a nearest neighbors of one another, in other
words J = {(i, j), (j, k), (k, i)} ⊂ E then the following
cycle inequalities on the boundary labels for all junctions J
should be satisfied as follows :

1 ≤
∑

(i,j)∈J

bij ≤ 2, ∀J ∈ J. (2)

Aside from the constraint formulated in Eq.(2), region la-
bels must be consistent with the relative depth order such that
a foreground region remains in front of a background region.
Therefore, constraint on R must also be considered to be con-
sistent with Eq.(2). Therefore R and B must be jointly esti-
mated. Instead of training separate classifiers for region and
edge labeling, we train a single classifier which maps a joint
feature to a joint label for R and B. For this, we define a
triplet label set T = {tij = (bij , ri, rj)|∀i, j ∈ E}. Since
both ri and bij are binary, tij can take on 8 different values,
and its inference can be considered as a multi-class classifica-
tion problem with eight classes. Now, a discriminant function
involving tij is defined as follows:

F (X,T;W)=
∑

(i,j)∈E

U(tij ;xi, xj ,W)

=
∑

(i,j)∈E

〈W, φjointij (xi, xj)〉. (3)

Here, U(tij ;xi, xj ,W) is a linear discriminative func-
tion that is parameterized by W. The joint feature φjoint

is a concatenation of edge and region features such that
φjointij = [φij , ψi, ψj ].
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Since the depth ordering must be physically plausible, the
constraints over triplet variables should obey Eq.(2). There-
fore, the optimization problem for finding the optimal triplet
labels can be formulated as follows:

T∗ = arg max
T∈T

F (X,T;W),

s.t. 1 ≤
∑

(m,n)∈J

bmn(tmn) ≤ 2, ∀J ∈ J (4)

Here,

bmn(tmn) =

{
0 if tmn ≥ 4
1 otherwise (5)

By LP-relaxation, Eq.(4) can be solved as follows:

Z∗ = arg max
Z

∑
(i,j)∈E

7∑
tij=0

〈W, φjoint
ij (xi, xj)〉z

tij
ij ,

s.t.

7∑
tij=0

z
tij
ij = 1, 0 ≤ ztijij ≤ 1,

1 ≤
∑

(m,n)∈J

[ ∑
tmn≥4

ztmn
mn +

∑
tmn<4

(1− ztmn
mn )

]
≤ 2,

∀J ∈ J, tij = 0, ..., 7. (6)

Here,

Z =

 z012 · · · z712
...

. . .
...

z0N−1,N · · · z7N−1,N

 . (7)

When the optimal Z∗ is inferred tightly, Z∗ is the optimal
triplet label T∗. Since there is one-to-one correspondance be-
tween tij and bij , B∗ is directly determined from T∗. How-
ever, it is not the case for R since each region attends multiple
triplet variables. In this paper, the region label R∗ is deter-
mined by majority voting scheme. Although it is heuristic,
we observed that this voting scheme is empirically effective
for region labeling without much performance degradation.

The triplet-based algorithm discussed so far has two main
advantages over the previous one: first, instead of explic-
itly defining hard-constraints between region and edge labels,
which is very difficult, our approach enforces their consis-
tency in a soft manner, which is much easier; during train-
ing multi-class triplet classifier, the cases of inconsistently-
labeled regions and edges are penalized since they do not oc-
cur in the training dataset. second, feature sharing effect; the
region feature affects the edge label, while the edge feature
affects the region label.

3. MAX-MARGIN TRAINING VIA
STRUCTURED-SVM

In this section, a large-margin training based on structured-
SVM is described. To estimate the parameter vector W of

the linear discriminant function F (X,T;W), the following
constrained-optimization problem referred to as margin scal-
ing [10, 22, 3] is solved as follows:

min
w,ξ

1

2
||W||2 +

C

N

N∑
n=1

ξn,

s.t. d(Xn,T;W) ≥ ∆(Tn,T)− ξn, T ∈ T \Tn, ∀n,
ξn ≥ 0, ∀n. (8)

Here, d(Xn,T;W) is the difference of the discriminant
function values between the ground-truth label Tn and the
predicted label T such as

d(Xn,T;W) = F (Xn,Tn;W)− F (Xn,T;W). (9)

Here, ξn is a slack variable to allow training error for Xn, and
C is the balance coefficient to trade-off between the training
error minimization and the margin maximization. The loss
function ∆(Tn,T) is an error measurement of predicting a
label T given the correct label Tn. To overcome the unbal-
ance problem, a modified Hamming loss [13] is used.

The optimization problem of Eq. (8) has exponential
number of constraints with respect to the dimensionality of
T. Thus, the cutting-plane algorithm [19, 11] is used to re-
duce the number of constraints. In the algorithm, the most
violated label for nth training data is inferred as

T̄n = arg max
T∈T /Tn

[∆(Tn,T)− d(Xn,T;W)] , (10)

then added to the constraint set. Note that the considered loss
function is decomposable over the test edges for efficient in-
ference of T̄n in Eq. (10). Given the constraint set, the op-
timization problem can be solved using quadratic program-
ming(QP).

4. EXPERIMENTS

Dataset : To compare previous algorithm, proposed algo-
rithm is evaluated on two dataset : Geometric Context Dataset
[9] and D-order dataset [12]. We used a half of images as
training set and the others as test set and evaluate our algo-
rithm.

Features : For foreground region labeling features ψi(xi),
a 52-dimensional low-level features [4] such as color, tex-
ture, location, and shape features are extracted from each re-
gion. In addition, we use 150 dimensional visual word fea-
tures [1] that representing the posterior probability of each
region belonging. For depth ordering features φij(xi, xj), we
design geometric cues (4 dim), Convexity cues (2 dim), Posi-
tion/location cues (2 dim) and saliency cues (27 dim).

Results : To evaluate the effectiveness of the proposed algo-
rithm, we compare the following three methods for two tasks
: depth ordering and foreground region labeling.
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Fig. 2. Qualitative results on benchmark dataset. In gray image, the green boundary denotes correct, red denotes incorrect, and
blue denotes unmatched boundaries.

(a) (b)

Fig. 3. Global consistency on depth ordering and region label-
ing. The region on the left side of the arrow is thought to be in
front. The marked miss-classified segment in (a) is modified
to be correct in (b) under constraints on triplet variable.

F/G only(baseline1) : Depth ordering w/o region labeling.
F/B only(baseline2) : Foreground/background region label-
ing via SVM.
F/G + F/B(proposed) : The multi-class triplet prediction.

Table 2 presents the quantitative results of figure/ground
labeling and foreground region labeling. The non-parenthesized
or parenthesized figures report the performance using ground-
truth (GT) segmentation and automatically generated seg-
mentation, respectively. Here, the figure/ground accuracy is
calculated by fraction of correctly predicted boundary pixels
over total boundaries. In case of using automatically gen-
erated segmentation, the performance is measured only on
the boundaries that intersect with the ones in the GT seg-
mentation. On Geometric Context and D-order datasets, the
proposed algorithm outperforms both individual tasks when
GT segmentation is given. Although the baseline perfor-
mances are high since the given GT segmentation is perfect,
the proposed algorithm further improves them by inferring
labels of the two tasks jointly. In case of using automatically
generated segmentation using [13], the overall performances
are degraded. However, the proposed algorithm still shows
much better performance than the baselines, especially on
figure/ground labeling task. Compare to the other algo-
rithms, proposed joint learning method outperforms both of
the dataset. Table 3 shows the figure/ground(depth order-
ing) accuracies on each dataset. We tested on both dataset
under same segmentation with same measurement for fair

Method Geometric Context D-order
F/G Acc F/B Acc F/G Acc F/B Acc

F/G only 83.2(76.6) - 95.2(73.2) -
F/B only - 86.0(81.8) - 100(91.9)
F/G+F/B 88.3(82.0) 95.9(84.8) 97.0(84.5) 100(92.4)

Table 2. Quantitative results on benchmark datasets. The
non-parenthesized/parenthesized figures report the perfor-
mance using ground-truth segmentation and TSIP segmenta-
tion, respectively.

Method Geometric Context D-order
Seg-ho GT seg GT seg

Hoiem et al [9] 79.9 - -
Jia et al [12] - 73.3 91.7

Proposed 81.5 80.8 93.2

Table 3. Average figure/ground accuracies(%) on Benchmark
dataset in same condition with others. ”Seg-ho” and ”GT seg”
denote using segmentation generated from [9] and ground
truth segmentation, respectively.

comparison. Moreover, as shown in Fig.3, the proposed joint
inference using triplet variable successfully conserves the
global consistency between region and edge labeling. Several
qualitative results are shown in Fig.2. Some failure cases oc-
cur when the automatically generated segmentation contain
very irregular and not object-based segments.

5. CONCLUSION

In this paper, we propose an algorithm that simultaneously
estimates consistent depth ordering and foreground region
labeling. Instead of inferring region and edge labels sepa-
rately, we infer them jointly as multi-class triplet variable
based on the proposed discriminant function. To efficiently
solve the optimization problem, LP relaxation is used. In our
experiment, the proposed algorithm outperformed two previ-
ously proposed state-of-the-art algorithms on two benchmark
datasets.
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