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ABSTRACT

Over the past years there has been an increasing interest in develop-
ing distributed computation methods over wireless networks. A new
communication paradigm has emerged where distributed algorithms
such as consensus have played a key role in the development of such
networks. A special case are wireless sensor networks (WSN) which
have found application in a large variety of problems such as en-
vironmental monitoring, surveillance, or localization, to cite a few.
One major design issue in WSNs is energy efficiency. Nodes are typ-
ically battery-powered devices and thus, it is critical to make a proper
use of the scarce energy resources. This fact motivates the search for
optimal conditions that favor the communication environment. It is
well known that the rate at which the information is spread across
the network depends on the topology of the network and that find-
ing the optimal topology is a hard combinatorial problem. However,
using convex optimization tools, we propose a method that tries to
find the optimal topology in a consensus wireless network that uses
broadcast messages. Our results show that exploiting the broadcast
nature of the wireless channel leads to more energy efficient configu-
rations than using dedicated unicast messages and that our algorithm
performs very close to the optimal solution.

Index Terms— Topology optimization, power allocation, con-
sensus networks

1. INTRODUCTION

In networked systems, a number of devices can communicate and
cooperate in order to perform some global task. Such systems offer
an advantage over traditional centralized ones in terms of cost, ro-
bustness and scalability, making them particularly suitable for large-
scale data analysis and monitoring. A clear example of a networked
system that has become very popular over the past years is a Wire-
less Sensor Network (WSN). WSNs are composed by a large num-
ber of low-cost devices (nodes) equipped with a variety of sensors
to measure quantities such as temperature, humidity, motion, etc.
Such nodes have limited computational and power resources and
their purpose is to gather and retrieve information from the envi-
ronment [1]. A new communication paradigm has emerged where
smart agents can take autonomous decisions and interact with each
other without the supervision of a centralized entity. The prolifer-
ation of networked systems in general, and of WSNs in particular,
have motivated the development of new methods and algorithms
for distributed processing. As an example, average consensus al-
gorithms [2–6] have gained a lot of popularity in recent years and
have been widely used for the integration of the acquired informa-
tion across the network. Under mild connectivity conditions, average

consensus algorithms appear as simple and effective mechanisms for
the computation of global averages from local estimates. Further-
more, they can also be used as a basic tool for solving more general
problems in a distributed fashion [7–9].

In the context of WSNs, energy efficiency is a major design issue
that should be looked at carefully. It is desirable for such networks
to be autonomous and capable of working for long periods of time
without battery replacement. The amount of energy spent by the net-
work is directly related to the configuration of the nodes themselves
and how they communicate. In the case of a consensus network
with bidirectional links (undirected graph), the rate at which infor-
mation spreads across the network is related to the second smallest
eigenvalue of the Laplacian matrix, also known as the algebraic con-

nectivity of the graph. Intuitively, the algebraic connectivity of the
graph gives us a measure of how well the network is connected (ie.,
the smaller its value the lower the connectivity of the network). For
instance, it can be shown that a graph is connected if and only if
its algebraic connectivity is positive [10]. As a consequence, there
have been some efforts dedicated to find the optimal topology/way
of mixing information over consensus networks in order to maxi-
mize the rate of convergence of consensus algorithms [11–14]. A
recent approach looks at the topology optimization problem from an
energy-efficient perspective [15]. The authors propose a connectiv-
ity model based on the received power at the nodes and try to find the
optimal power allocation (and topology) that yields the least energy
consumption in a consensus network. However, the authors in [15]
only consider the case of unicast messages and do not take advantage
of the broadcast nature of the wireless channel. Exploiting broadcast
communications helps to preserve energy resources, hence enlarging
the lifespan of the network.

In this paper, we consider the problem of topology optimization
for energy-efficient consensus-type communications in WSNs using
broadcast messages. We formulate the problem as a binary optimiza-
tion problem on the edge variables and transmission powers. In order
to solve the problem we use a relaxation of the binary variables and
allow them to take values within the unit interval. We show that the
objective function in the relaxed problem is quasi-convex and can be
efficiently solved using a bisection search over a family of semidef-
inite feasibility problems. Our formulation is particularly appealing
and our results easily reproducible using any general-purpose opti-
mization package such as CVX [16]. We will show in the experimen-
tal part that our method is more energy-efficient than using unicast
dedicated messages as in [15].
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2. PROBLEM FORMULATION

Consider a networked system such a wireless sensor network com-
posed of set of n elements, and where each node uses broadcast-type
messages to communicate with its adjacent (1-hop) neighbors. Let
pi, i = 1, . . . , n be the transmission power used by the ith node.
Assume a propagation model where the received signal gets attenu-
ated with the travelled distance so that the received power at node j
when node i is transmitting is given by

pij =
pi

1 +
�

rij
r0

�αij
, (1)

where rij = rji is the distance between nodes i and j, r0 is a ref-
erence distance where full power is received, and αij = αji models
the attenuation characteristics of the channel.

In order to allow for a reliable signal decoding, a proper thresh-
old on a certain Quality of Service measure such as the Bit Error
Rate (BER) must be imposed. A requirement in terms of BER can be
equivalently expressed as a requirement in terms of the received sig-
nal power. Therefore, connectivity among the nodes is established
based on whether a threshold in the received power over the link be-
tween them is met. This means that the received power in both direc-
tions (pij and pji) should be above the minimum required threshold.

More formally, let E = {1, . . . , L} be the set of all possible
edges in the network (i.e., L = n(n − 1)/2), and let xl ∈ {0, 1},
l ∈ E, be a binary variable that takes the value 1 if the lth edge
(link) is active and 0 otherwise. Then, based on our propagation and
connectivity models, it follows that

xlij =

�
1 pij ≥ pth, pji ≥ pth
0 otherwise , (2)

where lij ∈ E corresponds to the edge that links nodes i and j, and
where pth represents a threshold on the received power that allows
for reliable signal decoding. It is clear from (1) and (2) that fixing
the transmission powers pi would determine the underlying graph
topology, and that given a fixed topology, the minimum required
transmission powers can also be determined. Also note that not all
the combinations of transmission powers pi are allowed since by (2)
we are requiring the graph to be undirected, therefore the transmis-
sion powers must be related to each other.

We are interested in minimizing the energy consumption over a
consensus network that uses broadcast-type messages for communi-
cations. In order to analyze the properties of the network let us intro-
duce some notation that will facilitate the formulation of the prob-
lem. Let al ∈ {−1, 0, 1}n, l ∈ E, be a vector such that al(i) = 1
and al(j) = −1 if nodes i and j are adjacent through link l, and
al(k) = 0 for k �= i, j. The Laplacian matrix of the graph can then
be expressed as a function of the edges variables xl as

L(x) =
L�

l=1

xlala
T
l , (3)

where x = [x1, . . . , xL]
T is a vector containing all edges in the

network.
Recall that the rate of convergence for gossip algorithms is re-

lated to the second smallest eigenvalue λ2(L) (algebraic connectiv-
ity) of the Laplacian matrix [11]. Similarly to [15], a measure of the
required energy to achieve consensus over a graph using broadcast-
type messages is then proportional to

e ∝ 1Tp
λ2(L(x))

, (4)

where p = [p1, . . . , pn]
T is a vector of all transmission powers and

1 is a vector of all ones.
Taking into account (1) and (2), the relationship between the

transmission powers pi and the corresponding variables xlij is given
by

xlij =

�
1 pi, pj ≥ βij

0 otherwise , (5)

where βij is given by

βij = βji = pth

�
1 +

�
rij
r0

�αij
�
. (6)

Note that the value of βij represents the threshold on the transmis-
sion powers pi and pj for the ijth link to be active.

Our goal is to find the topology (and transmission powers) that
minimize the energy consumption in (4). Based on (5) we can now
formulate the energy minimization problem as

minimize
p,x

1Tp
λ2(L(x))

subject to xl ∈ {0, 1}, l = 1, . . . , L
pi ≥ xlijβij , i, j = 1, . . . , n,

(7)

where the last set of constraints captures the relationship between
the edge and transmission power variables.

3. RELAXATION AND ALGORITHMS

Problem (7) is hard to solve due to the binary constraint on the edge
variable x. Instead of dealing directly with problem (7) we will re-
sort to a relaxed version of the problem by allowing the variable x
to take values on the unit interval (i.e., 0 ≤ xl ≤ 1). Also note that
we can get rid of variable p by expressing it in terms of the variable
x using the relation

pi = max
j

βijxlij . (8)

It is easy to show that, at the optimum of problem (7), the transmis-
sion power at the nodes must satisfy equation (8).

With these considerations in mind, we can express the relaxed
version of (7) as

minimize
x

�n
i=1 maxj βijxlij

λ2(L(x))
subject to 0 ≤ xl ≤ 1, l = 1, . . . , L.

(9)

An important property of problem (9) is that it belongs to the
class of quasi-convex optimization problems and thus, can be
solved efficiently using numerical methods. In order to see this,
consider the objective function in (9), and let us denote it by
f(x). By definition, a function g(x) is quasi-convex if the set
X = {x | g(x) ≤ δ} is convex for every δ ∈ range (g(x)). Note

that f(x) =
�n

i=1 maxj βijxlij

λ2(L(x)) only takes positive values. There-
fore, we have that

f(x) ≤ δ ⇐⇒
n�

i=1

max
j

βijxlij − δ λ2(L(x)) ≤ 0, (10)

where δ ∈ R+ is a positive number. In order to show quasi-
convexity of f(x) we need to show that the set of points defined by
(10) is indeed convex. To see this, note that the left-hand-side of the
second inequality in (10) consists of the addition of two terms. The
first term

�n
i=1 maxj βijxlij is a convex function in x since it is
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the addition of convex functions (note that maxj βijxlij is a convex
function in x). The second term, −δ λ2(L(x)) is also convex in
x since λ2(L(x)) is concave in x and δ is positive. Concavity of
λ2(L(x)) can be easily shown since it is the pointwise infimum of a
family of convex (actually, linear) functions of x (see, [17]), that is

λ2(L(x)) = inf
u∈U

uT

�
L�

l=1

xlala
T
l

�
u, (11)

where U = {u |uT1 = 0, �u�2 = 1}.
Now that we have shown the quasi-convexity of f(x), a simple

method for solving problem (9) is to use a bisection search over δ.
This can be easily done by solving a family of feasibility problems
of the form

find x

subject to
�n

i=1 maxj βijxlij − δ λ2(L(x)) ≤ 0,
0 ≤ xl ≤ 1, l = 1, . . . , L.

(12)

Note that feasibility problem (12) is convex in the optimization
variable x. For its solution we will use a semidefinite program
(SDP) formulation of the problem that can be efficiently solved with
general-purpose optimization packages such as CVX [16]. It is easy
to realize that problem (12) can be equivalently expressed as the
following SDP feasibility problem

find {x,p, s}
subject to

�n
i=1 pi − δs ≤ 0,�L
l=1 xlala

T
l − 11T

n � sI,
pi ≥ βijxlij , i, j = 1, . . . , n,
0 ≤ xl ≤ 1, l = 1, . . . , L,

(13)

where an inequality of the form A � B means that matrix
A − B � 0 is positive semi-definite. For completeness, the bi-
section procedure to find the optimal solution of problem (9) is
outlined in Algorithm 1, where ε is a small number to decide upon
convergence. Note that the ε-optimal value of problem (9) corre-
sponds to the output f� coming from algorithm (1).

We have now a method that allows us to find a lower bound on
the optimal value of the original problem in (7). Using the solu-
tion to the relaxed problem (9) provided by the bisection search in
Algorithm 1, we can find a topology by thresholding the value of
x�. However, this does not guarantee that the obtained topology is
a valid one. An alternative method consist of sorting the values in
x� in descending order and forming different topologies by adding

Algorithm 1 - Bisection algorithm

1: Input: (�, u) Lower- and upper-bounds on the optimal value
2: repeat
3: δ = (u+ �)/2
4: Get (x,p) by solving feasibility problem (13)
5: if feasible then
6: (x�,p�, f�) ← (x,p, δ)
7: Set new upper-bound: u = δ
8: else
9: Set new lower-bound: � = δ

10: end if
11: until u− � < ε
12: Output: (x�,p�, f�)
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Fig. 1: Average energy consumption using unicast versus broadcast
messages for different sizes of the network and for a path-loss expo-
nent of α = 3.5.

one edge at a time. For each topology, we can easily check whether it
constitutes a valid broadcast topology or not. If the topology is valid,
we can then compute the objective function and keep the topology
with the smallest objective. Note that such an approach requires the
evaluation of at most n(n − 1)/2 topologies and that there will al-
ways be at least one valid topology (e.g., a fully connected network).
In practice, however we have observed that the found topology using
this procedure coincides most of the time with the optimal one.

4. SIMULATIONS

In this section we provide some numerical examples to illustrate the
validity of the proposed method for optimizing the topology of a
wireless consensus network using broadcast messages. For the prop-
agation model, we have used a threshold in the minimum received
power of pth = 0.01, and a reference distance of d0 = 0.1. The
path-loss exponent has been assumed to be the same for all links in
the network (i.e., αij = α, for all i, j). All networks have been ran-
domly generated to uniformly lie within the unit square (nodes’ coor-
dinates are drawn from a uniform distribution over the unit square).
In order to illustrate the advantage of broadcast-type of communi-
cations as compared to unicast, we have run a simulation where we
varied the number of nodes from n = 3 up to n = 6. For these
numbers, it is still possible to evaluate all possible topologies and
establish a back to back comparison of our method and the optimal
solution. For higher number of nodes, however, an exhaustive search
becomes impractical since the number of possible topologies grows
as fast as 2

n(n−1)
2 . In Figure 1 we have displayed the average en-

ergy consumption over 100 random network realizations as a func-
tion of the number of nodes, and for a path-loss exponent α = 3.5.
The optimal topologies for the unicast and broadcast cases have been
computed (labelled as Unicast and Broadcast, respectively) and dis-
played in the figure. Also, the energy consumption resulting from
the topology found using our approach (labelled as Relaxation) has
been also included in the figure. As it can be appreciated, there is
a clear advantage of broadcast communications versus unicast, an
effect that becomes even more pronounced as the number of nodes
increases. It is important to mention that in the unicast case we have
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Fig. 2: Average number of edges as a function of the path-loss ex-
ponent for a network of n = 6 nodes.

to count twice the power put on every link since the communica-
tion is bidirectional. Also note that the approach in [15] is lower
bounded by the Unicast curve. When comparing the optimal solu-
tion to the broadcast scenario and the proposed method we can see
that our technique comes very close to the optimal solution and, con-
sequently, outperforms the unicast scenario and the approach in [15].

Another interesting figure to look at is the number of edges of
the network. For a given network, the amount of active links should
be larger when the propagation channel conditions are favorable. To
formalize this intuition we have performed a simulation where we
have averaged the number of active links in a network of n = 6
nodes as a function of the path-loss exponent. The results of the
experiment are depicted in Figure 2. As expected, when the channel
conditions are very favorable, the best strategy is to use all links
(i.e., fully connected network, 15 edges in our example), whereas
the optimal topology approaches a tree (e.g., 5 edges in our example)
as communication becomes more expensive. Also in Figure 2 we
observe a very good agreement between the optimal topology and
the one found by our method.

As an illustrative example we have also depicted in Figures 3
and 4 a fully connected network of n = 20 nodes and the resulting
topology after optimizing with our method. As it can be appreciated,
there is a significant reduction in the number of links that should be
used in order to minimize the energy consumption.

5. CONCLUSIONS

We have presented an approach for reducing the amount of energy
consumed in a consensus network by finding the optimal topology
(and power allocation). Our method takes advantage of broadcast-
type of messages in order to reduce the energy consumption as com-
pared to the unicast case of [15]. Numerical experiments show that
the developed procedure performs close to the optimal case in the
tested scenarios. Another advantage of our formulation is that it can
be easily implemented with any general-purpose optimization soft-
ware, making our results easily reproducible.
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Fig. 3: A fully connected network of n = 20 nodes.
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Fig. 4: Best topology obtained through our method.
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