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ABSTRACT

Sensor selection is an important design task in sensor networks. We
consider the problem of adaptive sensor selection for applications in
which the observations follow a non-linear model, e.g., target/bear-
ing tracking. In adaptive sensor selection, based on the dynamical
state model and the state estimate from the previous time step, the
most informative sensors are selected to acquire the measurements
for the next time step. This is done via the design of a sparse se-
lection vector. Additionally, we model the evolution of the selection
vector over time to ensure a smooth transition between the selected
sensors of subsequent time steps. The original non-convex optimiza-
tion problem is relaxed to a semi-definite programming problem that
can be solved efficiently in polynomial time.

Index Terms— Sensor networks, adaptive sensor selection, sen-
sor placement, non-linear measurement model, non-linear filtering,
convex optimization, sparsity.

1. INTRODUCTION

Wireless sensors are widely used in a large variety of applications
and services related to habitat monitoring, safety and security, lo-
gistics, and surveillance, to list a few. Each of the sensor nodes are
capable of sensing, processing, and communicating to other nodes
or a central unit (fusion center). These nodes are often spatially de-
ployed to function as a network and perform a specific sensing task.
We seek to extract relevant information by optimally processing the
data acquired from the sensors by identifying the informative, redun-
dant, and identical observations.

Optimal sensor placement forms an important and fundamen-
tal design task for such distributed sensor networks in which the
spatial locations of the sensor nodes are optimized to guarantee a
certain performance measure such as energy-efficiency, information
measure, or estimation/detection accuracy. The sensor placement
is even more important for location-related services such as local-
ization, navigation, and tracking. In these problems the estimation
error depends on the spatial constellation of the sensors as certain
constellations deteriorate the estimation performance. The sensor
placement problem can be interpreted as a sensor selection problem
in which the best subset of the available sensor locations are selected
subject to a specific performance constraint.

There exists a vast literature on sensor selection [1, and refer-
ence therein], and it has been applied to a wide variety of problems:
dynamical systems [2–6], power grid monitoring [7], field estima-
tion [8], and reliable sensor selection [9]. The sensor selection prob-
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lem is typically formulated as an optimal experimental design prob-
lem [10] in which a scalar cost related to the mean squared error
(MSE) covariance matrix is optimized to select the best subset ofK
sensors, where K is typically known [1, 7]. This is a non-convex
Boolean optimization problem which incurs a combinatorial search
over all the

(
K
M

)

possible combinations, and hence, it is often sim-
plified via convex relaxation techniques [1] or solved using greedy
heuristics. Alternatively, the selection is performed based on the co-
herence among the columns of the system matrix as in [8,11] which
also optimizes the MSE. The optimal experimental design problems
are well-studied for observations that follow a linear model for which
the MSE covariance matrix has a known closed form. However, the
error covariance matrix generally does not admit a known closed
form for non-linear observation models, and hence the above meth-
ods cannot be used directly.

Recently, we proposed a (static) sensor selection framework for
observations related to a non-linear model [12, 13]. In [13], we de-
sign a sparse selection vector that selects the most informative subset
of the sensors such that a certain Cramér-Rao bound (CRB) optimal-
ity on the estimates is guaranteed. The current paper is an extension
of the framework proposed in [13] for systems that obey a known dy-
namical model. More specifically, the proposed framework is aimed
at applications related to target/bearing tracking, dynamic field es-
timation, and non-linear filtering in general. A similar problem has
been considered in [14] for target tracking, where the sensors that
yield the minimum a posteriori covariance are selected, with the
a posteriori covariance matrix computed using the predicted esti-
mate of an extended Kalman filter (EKF). However, the predicted
estimates are typically far away from the true state (depending on
the process/measurement noise), and hence, the sensor locations are
not optimized for the true state. To alleviate this problem, different
from [14], we constrain the posterior CRB (PCRB) to be satisfied
for every point within a region characterized by the predicted esti-
mates and the a posteriori covariance matrix, such that, the true state
lies in this region with an overwhelming probability. The selection
is performed via the design of a sparse selection vector which leads
to an elegant semi-definite programming (SDP) problem. We fur-
ther model the evolution of the selection vector in time using Gauss-
Markov recursions to control the smoothness of the selection vector
over time. This evolution model enables mobile sensing, and the
path design of the mobile sensors.

2. STATE-SPACEMODEL AND PRELIMINARIES

We assume a non-linear measurement model for observing an un-
known dynamic parameter θt ∈ R

N×1 corrupted by additive noise:

yt = ht(θt) + nt, (1)
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Algorithm 1 Extended Kalman fiter (EKF) [16]

1. Initialize t = 0, θ̂0|0, and P0|0.
2. for t = 0 to tmax

3. given yt, ht(.),At,Σt, andQ
4. prediction
P1. θ̂t|t−1 = Atθ̂t−1|t−1

P2. Pt|t−1 = AtPt−1|t−1A
T
t +Q

5. update
U1. ỹt = yt − ht(θ̂t|t−1)

U2. St = H̃tPt|t−1H̃
T
t +Σt,

where H̃t =
∂ht(θ)
∂θT

∣
∣
∣
θ=θ̂t|t−1

U3. Lt = Pt|t−1H
T
t S

−1
t

U4. θ̂t|t = θ̂t|t−1 + Ltỹt

U5. Pt|t = (I− LtHt)Pt|t−1

10. end

where the spatial measurements at time instance t are stacked in
the measurement vector yt = [yt,1, yt,2, . . . , yt,M ]T ∈ R

M×1,
and each of these measurements is a non-linear functional given
by ht,m(.) : R

N → R for m = 1, 2, . . . ,M, with the regres-
sor ht(θt) = [ht,1(θt), . . . ,ht,M (θt)]

T . The additive noise vec-
tor nt = [nt,1, nt,2, . . . , nt,M ]T ∈ R

M×1 is assumed to be zero-
mean with a covariance matrix Σt = diag(σ2

t,1,σ
2
t,2, . . . ,σ

2
t,M ) ∈

R
M×M . The unknown parameter is assumed to obey the following

dynamical model:
θt+1 = Atθt + ut, (2)

whereAt ∈ R
N×N is the state transition matrix, and ut ∈ R

N×1 is
the process noise that accounts for unmodeled dynamics. Here, we
model ut ∼ N (0,Q), whereQ ∈ R

N×N represents the covariance
matrix.

The a posteriori estimate θ̂t|t satisfies the well-known posterior
Cramér-Rao bound (PCRB) inequality given by

E{(θ̂t|t − θt)(θ̂t|t − θt)
T } ≥ F−1

t (θt), (3)

where the posterior Fisher information matrix (FIM) Ft(θt) is com-
puted using the following recursion [15]:

Ft(θt) = (Q+AtF
−1
t−1(θt−1)A

T
t )

−1 + ḢT
t Σ

−1
t Ḣt, (4)

with the Jacobian matrix Ḣt = ∂ht(θ)
∂θT

∣
∣
∣
θ=θt

∈ R
M×N . The sec-

ond term in (4) is related to the log-likelihood of the measurements
ln p(yt;θt). If the observations are independent, then the infor-
mation measure from each observation is additive, which is intu-
itive as each independent measurement contributes some informa-
tion [13,16]. Using this property, we can further simply (4) to arrive
at

Ft(θt) = (Q+AtF
−1
t−1(θt−1)A

T
t )

−1 +
M∑

m=1

Ft,m(θt), (5)

where Ft,m = 1
σ2
t,m

(
∂ht,m(θt)

∂θt

)(
∂ht,m(θt)

∂θt

)T

.

The a posteriori estimate θ̂t|t can be obtained using any of the
non-linear filters (e.g., extended Kalman filter (EKF), unscented
Kalman filter (UKF), or particle filters). For the sake of complete-
ness, the EKF is briefly summarized in Algorithm 1.

3. OPTIMIZATION PROBLEM

The adaptive sensor selection problem can be interpreted as a prob-
lem to select the best subset out of theM available sensors to acquire
measurements for time step t such that a certain accuracy on the esti-
mate θ̂t|t is guaranteed. In order to perform selection, we introduce
a selection vector wt = [wt,1, wt,2, . . . , wt,M ]T ∈ {0, 1}M , and
modify the model in (1) to

yt,m = wt,mht,m(θt) + nm, m = 1, 2, . . . ,M,

where wt,m is a virtual Boolean selection parameter, i.e., wt,m ∈
{0, 1}, m = 1, 2, . . . ,M , where wt,m = (0)1 indicates that the
sensor is (not) selected.

Remark 1 (Active sensing). In active sensing, the sensors trans-
mit probing signals (e.g., ranging signal). The selection parameter
wt,m for active sensing is a soft parameter used for joint selection
and resource allocation [12], i.e., wt,m ∈ [0, 1] is a resource (e.g.,
ranging energy) normalized to the maximum prescribed value, and
hence, it is dimensionless.

The FIM for the modified measurement model will be

Ft(wt,θt) =

Jt−1(θt−1)
︷ ︸︸ ︷

(Q+AtF
−1
t−1(θt−1)A

T
t )

−1

+
M∑

m=1

wt,mFt,m(θt),

(6)

where Jt−1(θt−1) is basically the prior FIM.
As a performance measure, we constrain the estimation error

εt = θ̂t|t − θt to be within an origin centered circle of radius Re

with a probability higher than Pe, i.e., Pr(‖εt‖2 ≤ Re) ≥ Pe. The
true states θt and θt−1 are not known in practice, unless the process
noise is zero (deterministic trajectory). In order to select the mea-
surements for the next time step t, the prior Fisher Jt−1 is evaluated
at θ̂t−1|t−1 and the predicted estimate θ̂t|t−1 (cf. Algorithm 1) is
assumed as the true state in which case the FIM in (4) is nothing
but the inverse of the a posteriori covariance matrix P−1

t|t . In other
words, the FIM in (6) is approximated to

Ft(wt,θt) ≈ Jt−1(θ̂t−1|t−1) +
M∑

m=1

wt,mFt,m(θ̂t|t−1). (7)

A sufficient condition to satisfy this accuracy constraint is given by
the inequality λmin(Ft(wt,θt)) ≥ λ, which can be alternatively
expressed as the following linear matrix inequality (LMI)

Jt−1(θ̂t−1|t−1) +
M
∑

m=1

wt,mFt,m(θ̂t|t−1) ( λIN , (8)

where λ = N
R2

e
log( 1

1−Pe
) [13]. Here, λmin(A) denotes the mini-

mum eigenvalue of a symmetric matrix A. The solution set of wt

satisfying this LMI is convex [10].
For a non-zero measurement noise the predicted state will al-

ways be away from the true state. Hence, we constrain (8) for every
point within a certain domain Tt determined by θ̂t|t−1 and Pt|t−1.
More specifically, Tt is a circle having a radius 5

√

tr{Pt|t−1} cen-
tered around θ̂t|t−1. Since θ̂t|t−1 ∼ N (θt,Pt|t−1), the true state
lies within a circle of radius 5σ with an overwhelming probability,
where σ =

√

tr{Pt|t−1} is the mean standard deviation. Similarly,
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the past estimate lies within the domain Tt−1 which is a circle cen-
tered around θ̂t−1|t−1 having a radius of 5

√

tr{Pt−1|t−1}. The
adaptive sensor selection problem can be briefly stated as follows.

Problem statement (Adaptive sensor selection). Given the mea-
surement process ht,m(θt),m = 1, . . . ,M, find a vector wt ∈
{0, 1}M for each time step t that selects the minimum number
of most informative sensors that satisfies the accuracy constraint
Jt−1(θt−1) +

∑M
m=1 wt,mFt,m(θt) ( λIN , ∀θt−1 ∈ Tt−1, and

∀θt ∈ Tt.

The adaptive sensor selection can be formulated as the design of
a selection vector which can be expressed as the following optimiza-
tion problem

argmin
wt

‖wt‖0 (9a)

s.t. Jt−1(θt−1) +
M
∑

m=1

wt,mFt,m(θt) ( λIN ,

∀θt−1 ∈ Tt−1,∀θt ∈ Tt, (9b)

wt ∈ {0, 1}M , (9c)

where the #0(-quasi) norm refers to the number of non-zero entries
ofwt. This is non-convex Boolean optimization problem. The prior
FIM is independent of the optimization variable, hence, it is suffi-
cient to use a worst-case θt−1 ∈ Tt−1, more specifically, θ̃t−1 =
argminθt−1∈Tt−1

λmin(Jt−1(θt−1)).

4. ADAPTIVE SENSOR SELECTION

In this section, we provide an algorithm to solve the proposed opti-
mization problem and also model the evolution ofwt in time.

4.1. Relaxed sensor selection

The optimization problem in (9) is non-convex due to the #0(-quasi)
norm cost function and the Boolean constraint. We use the tradi-
tional best convex surrogate for the #0(-quasi) norm based on the #1-
norm heuristic, and the Boolean constraint is relaxed to the convex
box constraint [0, 1]M . Due to the box constraint (9c), the #1-norm
will simply be an affine function 1Twt. The relaxed optimization
problem is given as

ŵt = argmin
wt∈ [0,1]M

1Twt (10a)

s.t. Jt−1(θ̃t−1) +
M∑

m=1

wt,mFt,m(θt) ( λIN , ∀θt ∈ Tt.

(10b)

Remark 2 (Relaxed active sensor selection). The relaxed active sen-
sor selection problem takes the same form as in (10). In fact, mini-
mizing the #1-norm in active sensor selection minimizes the overall
network resources (e.g., overall network ranging energy).

The relaxed optimization problem is a standard SDP problem
that can be solved efficiently in polynomial time using interior-point
methods or off-the-shelf solvers like SeDuMi [17]. The computa-
tional complexity of solving (10) is of the order of O(M3) [13].

4.2. Smoothness model

We now model the evolution of wt in time. A smooth evolution of
the selection vector is important for mobile sensing (or multi-static

target tracking for instance). The evolution of the selection vector is
modeled as a Gauss-Markov recursion [18]

wt = Btwt−1 + et, (11)

where Bt ∈ R
M×M is a (right-)stochastic transition matrix, and

et = [et,1, . . . , et,M ]T ∈ R
M is the process noise vector. The

smoothness depends on the design of the matrix Bt. Initializing
the recursion with an arbitraryw0 *= 0, and running (11) for a large
enough t, leads to non-sparsewt. In order to incorporate the smooth-
ing effect of the selection vector between subsequent time instances,
we use the sparse estimate ŵt−1 instead ofwt−1. The optimization
problem taking into account the smoothness is given as

ŵt,sm = argmin
wt∈ [0,1]M

‖wt‖1 + µ ‖wt −Btŵt−1,sm‖22 (12a)

s.t. Jt−1(θ̃t−1) +
M∑

m=1

wt,mFt,m(θt) ( λIN ,∀θt ∈ Tt,

(12b)

where µ is the smoothness controlling parameter. Smoothness in
the selection vector ensures an easy hand-off between the selected
sensors.The approximate Boolean solution can be then recovered by
randomization rounding [13].

5. SIMULATIONS

To test the proposed algorithms, we use CVX [19] which internally
calls SeDuMi [17]. We illustrate the problem of adaptive sensor
selection for target tracking based on the distance measurements.
Using the selected sensors, the state vector θt = [xT

t , ẋ
T
t ]

T ∈ R
4×1

is estimated at a discrete time instance t. Here, xt ∈ R
2×1 is the

target position vector, and ẋt ∈ R
2×1 is the velocity vector. The

non-linear measurement model is given by

ht,m(θt) := dt,m = ‖xt − am‖2, m = 1, 2, . . . ,M,

where am ∈ R
2×1 is the known position of themth sensor.

We do not make measurements on the velocity, hence, we con-
strain only the FIM related to the distance measurements. Assuming
that the FIM is composed of the following submatrices Ft(θt) =
[

F
(xx)
t F

(xẋ)
t

F
(ẋx)
t F

(ẋẋ)
t

]

, then using the Schur complement, the a poste-

riori estimate x̂t|t satisfies the following PCRB inequality E{(x̂t|t−
xt)(x̂t|t − xt)

T } ≥ [Ft(x)]
−1, where

Ft(x) = F
(xx)
t − F

(xẋ)
t [F(ẋẋ)

t ]−1F
(ẋx)
t .

Since, we do not make any measurements related to ẋ, the FIM re-
lated to measurements Ft,m,m = 1, . . . ,M, will have a non-zero
upper-left 2× 2 submatrix denoted by F(xx)

t,m , and remaining subma-
trices will all be zeros. Similarly, assume that the prior FIM is also

composed of the following submatrices Jt =

[

J
(xx)
t J

(xẋ)
t

J
(ẋx)
t J

(ẋẋ)
t

]

.

Using the Schur complement and some straightforward matrix prop-
erties, we arrive at

F
(xx)
t (wt,xt) = J̃t−1(θ̃t−1) +

M∑

m=1

wt,mF
(xx)
t,m (xt),
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Fig. 1: Adaptive sensor selection for target tracking based on range measurements for the time interval (3τs, 10τs). (a) and (c) trajectory of
the true state for a certain realization, predicted estimate from the EKF, and the target area Tt. (b) and (d) sensor activation time pattern for
µ = 0 (without smoothness) and µ = 0.5 (with smoothness), respectively.

where J̃t−1 = J
(xx)
t−1 − J

(xẋ)
t−1 [J

(ẋẋ)
t−1,]

−1J
(ẋx)
t−1 ∈ R

2×2. The LMI
constraints in (10b) for the case when only some of the state param-
eters are measured are given by

J̃t−1(θ̃t−1) +
M∑

m=1

wt,mF
(xx)
t,m (xt) ( λI2, ∀xt ∈ Tt,

where Tt is a circle with center x̂t|t−1 and radius 5
√

tr{P(xx)
t|t−1}.

Here,P(xx)
t|t−1 is the 2×2 upper-left submatrix ofPt|t−1. We simply

use θ̃t−1 = θ̂t−1|t−1. The parameters determining the accuracy are
set to Re = 10 cm and Pe = 0.95 to compute λ = 2

R2
e
log( 1

1−Pe
).

We consider an area of 50 × 50 square meter with M = 36
equally spaced sensor grid points as shown in Fig. 1a. We use the
following parameters for simulations: observation time T = 20 s,

At =






1 0 τs 0
0 1 0 τs
0 0 1 0
0 0 0 1




 , Q = 10−2









τ3
s

3 0
τ2
s

2 0

0
τ3
s

3 0
τ2
s

2
τ2
s

2 0 τs 0

0
τ2
s

2 0 τs









,

and, sampling time τs = 2.5 s. The dynamic model is initialized
with x0 ∼ N (12, 2.778I2) and ẋ0 ∼ N (212, 0.01I2) to emulate
the target heading towards the north-east direction. The EKF is ini-
tialized with θ̂0|0 = 0, and P0|0 = 1000I2 . The stochastic matrix
Bt is designed such that the transition to the one-hop sensor grid

points and staying in the current state takes equal probabilities. In
other words, in Fig. 1a, the corner most grid point has 3 one-hop
neighbors, hence, it can move to any of these one-hop neighbors
each with a probability of 1/4 or stay in the current state with a
probability of 1/4. The selection vector is initialized with four se-
lected sensors on the corner most grid points in the south-west (see
Fig. 1c). We assume a distance dependent noise model such that
nm ∼ N (0, σ2

t,m) with σ2
t,m := σ2

d−2

t,m

, where σ2 is the nominal

noise. We use σ2 = 10−5.
For a practical implementation of the algorithm, we discretize

the target area Tt, and each of the target grid points results in an LMI
constraint. Here, we discretize Tt with 25 points as shown in Fig. 1a
and Fig. 1c (indicated as the target area in green color). For the sake
of easy visibility, we plot the results in the time interval (3τs, 10τs),
as the target area is very large for initial estimates. Even though the
predicted estimates are not necessarily on top of the true state, the
true location will be within the target area with an overwhelming
probability. Due to the assumed path-loss model, the sensors close
to the target area are selected. The sensor activation time pattern
without (µ = 0) and with (µ > 0) the smoothness model is shown
in Fig. 1b and Fig. 1d, respectively. The Boolean solution is obtained
by simply rounding all the non-zero entries of ŵ to one. The number
of selected sensors with µ > 0 is larger as compared to the case with
µ = 0. However, with the smoothness model, the sensors stay active
for a longer duration ensuring a smooth hand-off.
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