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ABSTRACT

We consider the problem of data estimation in a sensor wire-
less network where sensors transmit their observations ac-
cording to decentralized and centralized transmission sched-
ules. A data collector is interested in achieving a data estima-
tion using several sensor observations such that the variance
of the estimation is below a targeted threshold. We analyze
the waiting time for a collector to receive sufficient sensor
observations. We show that, for sufficiently large sensor sets,
the decentralized schedule results in a waiting time that is a
constant factor approximation of the waiting time under the
optimal centralized scheme.

Index Terms— Wireless sensor network, data fusion,
scheduling, waiting time

1. INTRODUCTION

We consider a network of wireless sensors that have i.i.d. ob-
servations of an attribute, e.g. temperature. A collector is in-
terested in estimating this attribute by combining a subset of
available observations such that the accuracy of the estimate is
below a targeted threshold. Since the sensor observations are
independent and identically distributed, any sufficiently large
subset of observations can achieve the required accuracy. In
this work we analyze scheduling mechanisms for sensors that
allow the collector to obtain these sensor observations.

The problem of sensor data fusion has been extensively
studied in [1, 2, 3, 4]. Data fusion techniques combine data
from several sensors to improve data accuracy, which is diffi-
cult to achieve interrogating a single sensor alone. Estimation
of a variable using a set of sensor nodes and a fusion center
has been studied in [5, 6, 7]. Generally, the sensor obser-
vations are transmitted to a fusion center where a final esti-
mate is determined by performing a linear combination of the
sensor observations, a technique referred to as the centralized
BLUE [8]. In [5, 7], the authors study the problem of energy
minimization while keeping the mean square estimation er-
ror of the sensor observations below a targeted threshold. In

[6], the estimation of a noise-corrupted parameter given band-
width constraints is considered. Complementary to the work
mentioned above, our focus is on scheduling mechanisms to
support data fusion, when the sensors are contending for the
medium.

Scheduling transmission techniques for wireless sensor
networks have been studied extensively [9, 10]. Most of the
work considered scheduling independently from the data fu-
sion task. In contrast, in [11] a scheduling method to maxi-
mize the lifespan of a wireless sensor network is investigated.
The authors provide an algorithm to partition the sensors in
adjacent sets and schedule each sets for transmission such that
the observations collected by the active sensors provide an ac-
curate estimate of an attribute. In [12], the problem of data fu-
sion is considered, where sensors transmit their observations
according to a slotted ALOHA protocol (see [13] for an intro-
duction to the ALOHA protocol). The authors show that the
fusion rule is a weighted sum of the received messages and
their collisions.

In this paper, we consider a decentralized scheduling, i.e.
similar to slotted ALOHA studied in [12]. Compared to [12],
in our case collisions do not provide any useful information
to the receiver. Also, the estimation problem itself is trivial
due to the i.i.d. observations. The main benefit of a com-
pletely decentralized scheduling is that the sensors do not re-
quire any knowledge about the state of the network. However,
a potential drawback is low performance. The main focus of
this work is to compare the expected time to obtain sufficient
observations under the decentralized scheduling with the ex-
pected time of an optimal centralized scheduling.

Our main contribution is to show that despite the con-
trasting settings of the two transmission schedules, the decen-
tralized scheduling provides a constant factor approximation
to the optimal centralized schedule for the expected waiting
time. This demonstrates that scheduling schemes for wireless
sensor networks should be designed jointly with the intended
data fusion task. Indeed, whereas it is well known that for
traditional communication networks, slotted ALOHA is lim-
ited in performance, in the current work it is shown that it is
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at most a constant factor away from an optimal centralized
scheduling scheme.

The remainder of this paper is organized as follows. In
Section 2 we formulate the problem statement. In Section 3
we compute the expected time for the decentralized and cen-
tralized transmission schedules. In Section 4 we discuss the
results and provide conclusions.

2. MODEL AND PROBLEM STATEMENT

We consider a wireless sensor network consisting of N sen-
sor nodes. Each sensor makes an observation Xi on a at-
tribute θ. The observations are subject to independent and
identically distributed additive Gaussian noise with variance
σ2, i.e. Xi ∼ N (θ, σ2).

A data collector is interested in estimating θ based on the
sensor observations. Any subset of s observations is suffi-
cient. The variance of the estimate X̄ at the collector needs to
be below a targeted threshold T . Since

V ar(X) = V ar(
1

s

s∑
i=1

Xi) =
1

s2

s∑
i=1

V ar(Xi) =
σ2

s
,

it follows that s = dσ
2

T
e.

The sensors transmit their observations to a collector.
However, simultaneous transmissions lead to a destructive
collision and the collector does not obtain any information.

The sensor nodes are awake with probability p, 0 < p < 1
and asleep with probability 1 − p. Being awake or asleep re-
flects, for instance, the availability of energy in case of energy
harvesting sensor nodes. Sensors can only transmit if they are
awake.

In the decentralized R transmission scheme, an awake
sensor transmits the observation with probability q, 0 < q < 1
and remains silent with probability 1 − q. In the analysis of
this transmission scheme we will optimize over q.

The optimal centralizedC scheme assumes that the sensor
nodes are centrally scheduled for transmission based on their
on/off status and whether the collector has already received
their observation. More precisely, a sensor that has not suc-
cessfully transmitted its observation previously is considered
eligible. If two or more sensor nodes are awake and eligible
for transmission during the same time slot, then one of the
sensors is randomly selected for transmission.

We are interested in the expected waiting time E[W ] un-
der the decentralized and centralized transmission scheduling
such that the collector retrieves data of sufficient accuracy.

We will make use of the digamma function, defined as
ψ(n) = Hn−1 − γ, n ∈ N, where Hn =

∑n
k=1

1
n is the nth

harmonic number, and γ is the Euler-Mascheroni constant.

3. ANALYSIS

We analyze the expected waiting time for a collector to re-
trieve sufficient sensor observations under the decentralized
and centralized transmission scheduling.

Theorem 1. For the optimal choice of q, the expected waiting
time for a collector to get s distinct observations under the
decentralized R scheduling is:

E[WR] =

{
f(N, s) 1

p(1−p)N−1 , if p ∈ (0, 1
N )

Nf(N, s)( N
N−1 )N−1, if p ∈ [ 1

N , 1)

where f(N, s) = [ψ(N + 1)− ψ(N − s+ 1)].

Proof. Since the scheduling mechanism is independent and
identical over time, the time it takes for the collector to obtain
the i-th distinct observation after having received the (i− 1)-
th observation is the time until the first success in a Bernoulli
trail. The i-th observation is successfully received if one of
theN− i+1 sensors have not yet been collected, is the single
sensor transmitting, i.e. the probability of success is

Si =

(
N

1

)
pq
(

1− pq
)N−1N − i+ 1

N
. (1)

Now,

E[WR] =

s∑
i=1

1

Si

=

s∑
i=1

1[
pq (1− pq)N−1

]
(N − i+ 1)

=
ψ(N + 1)− ψ(N − s+ 1)

pq
(

1− pq
)N−1 . (2)

It remains to optimize over q ∈ [0, 1]. The gradient of
E[WR] is

d

dq
E[WR] =

ψ(N + 1)− ψ(N − s+ 1)

p

Npq − 1

q2(1− pq)N
.

This shows that if p ≥ 1
N , then E[WR] is minimized for

q = 1
Np . In the case that p < 1

N , the value of q for which
E[WR] is minimized is q = 1.

Figure 1 shows that for a sufficiently large size of the sam-
pling sensor setN , E[WR] is independent of the transmission
probability p and becomes a function of N . This is explained
by the fact that the probabilities of one sensor transmitting
and being awake compensate each other in order to minimize
the waiting time. For example, a low probability of being
awake is compensated by a high probability of transmitting
when awake such that the waiting time is minimized.

Next, we analyze the centralized transmission scheme.
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Fig. 1. E[WR] for different transmitting probabilities, s = 4.

Theorem 2. The expected waiting time for the data collec-
tor to retrieve s distinct observations under the centralized
scheduling is:

E[WC ] =

s∑
i=1

1

1− (1− p)N−i+1
.

Proof. Again, the scheduling mechanism is independent and
identical over time. Therefore, the time until the collector
retrieves the i-th sensor observation, given it already received
i − 1 distinct observations, can be viewed as the time until a
first success in a Bernoulli trial, where the success probability
Ti is the probability that one sensor of those that have not
previously transmitted is awake. Hence, the probability of
success Ti is:

Ti = 1− (1− p)N−i+1

Now,

E[WC ] =

s∑
i=1

1

Ti
=

s∑
i=1

1

1− (1− p)N−i+1
.

Theorem 3. Let s ∈ N. Then

lim
N→∞

E[WR]

E[WC ]
= e.

Proof. For N sufficiently large,

lim
N→∞

E[WR] = lim
N→∞

s∑
i=1

N

N − i+ 1

(
1 +

1

N − 1

)N−1
= se. (3)

Also, considering p to be fixed,

E[WC ] =

s∑
i=1

1

1− (1− p)N−i+1
=

s∑
i=1

∞∑
j=0

((1− p)N−i+1)j

≥
s∑
i=1

1 + (1− p)N−i+1

= s+
1− (1− p)s

1− (1− p)
(1− p)N+1−s. (4)

Using (3) and (4), limN→∞
E[WR]
E[WC ]

= e.

Figures 2 shows that for large N , the ratio of the expected
waiting time under the decentralized and centralized schemes
approaches a constant e from above. Also, for sufficiently
large N , the ratio is bounded from above by a constant.
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Fig. 2. The ratio E[WR]/E[WC ] for large N , s = 10.

We now consider s to be a fraction smaller than the sam-
pling sensor size N , with N/s = β, β > 1.

Theorem 4. For sufficiently large N and s and a constant
ratio β = N/s, where β > 1,

E[WR]

E[WC ]
≤ edβe log(

β

β − 1
).

Proof. We now consider both N and s sufficiently large and
keep the ratio β = N/s constant, where β > 1.

E[WR] = dβse
dβse∑

x=dβse−s+1

1

x
·
(
dβse
dβse − 1

)dβse−1

≤ dβse
βs∑

x=βs−s+1

1

x
·
(
dβse
dβse − 1

)dβse−1

≤ dβse
∫ βs

βs−s+1

1

x− 1
dx ·

(
dβse
dβse − 1

)dβse−1
≤ dβes log

(
βs

βs− s

)(
dβse
dβse − 1

)dβse−1
(5)
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Using (5) and the fact that E[WC ] ≥ s, see (4),

E[WR]

E[WC ]
≤ dβe log

(
β

β − 1

)
·
(

1 +
1

dβse − 1

)dβse−1

Note that
(

1 + 1
dβse−1

)dβse−1
approaches e from below.

Therefore,
E[WR]

E[WC ]
≤ edβe log(

β

β − 1
)

Notice that limN→∞dβe log( β
β−1 ) = 1, in accordance

with the result of Theorem 3.

Figure 3 shows that for a fixed ratio β of the size of the
sampling sensor setN and the s retrieved observations, where
N and s are large, the waiting time under the decentralized
schedule is no higher than a constant edβe log( β

β−1 ) than the
centralized schedule.
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Fig. 3. The limiting ratio E[WR]/E[WC ] for large N , when
β = 2.

4. DISCUSSION AND CONCLUSIONS

We investigated the expected waiting time for a collector to
retrieve sufficient sensor observations on an attribute such that
the estimate of the attribute has a variance below a targeted
threshold. We analyzed the expected waiting time for both
decentralized and centralized sensor transmission schemes.
We showed that the optimal centralized schedule has a lower
expected waiting time than the decentralized scheme. How-
ever, the centralized schedule assumes information on the
awake/asleep status of the sensors and the redundancy of
the observations transmitted, which is difficult to achieve in
reality. Nonetheless, we showed that the decentralized sched-
ule, which requires no coordination between the sensors is
a constant larger than the optimal centralized scheme when

the sampling set of sensors N is sufficiently large. Addition-
ally, we showed that for large N , the waiting time to retrieve
sufficient observations does not depend on the probability of
transmitting or being awake.

Future work includes investigating the waiting time for
multiple collectors to retrieve sufficient data from sensors
randomly placed in the plane. In addition, we plan to in-
vestigate the waiting time for data estimation when sensors’
observations are correlated.
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