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ABSTRACT
This paper studies the blind identification of multi-channel
FIR systems in the context of sensor networks. Distributed
identification algorithms are developed for both noise-free
and noise-contaminated networked systems. The proposed
algorithms distribute the data storage and computational load
among multiple agents connected by a specified topology,
and are fulfilled via information exchanges among neighbor-
ing agents without the need of fusion centers. In the presence
of measurement noises, a stabilized distributed algorithm is
provided which can avoid trivial estimations of the multiple
channels. In addition, convergence properties of the proposed
algorithms are provided, and simulation examples are given
to show the performances of the proposed algorithms.

Index Terms— Blind identification, multi-agent system,
consensus based gradient method.

1. INTRODUCTION

Motivated by the emergence of large-scale and inexpensive
sensor networks, intensive researches have been done on
distributed cooperative control and optimization [1]. In this
paper, the blind identification of multiple channels in a net-
worked system is investigated. A common source signal,
emitted from a moving target on the ground or an unmanned
aerial vehicle (UAV) in the air, is acquired by multiple sensors
in a network, which are connected following a communica-
tion topology (see Fig. 1). Due to the inhomogeneous trans-
mission medium, the acquired signals of the sensors deployed
at different places are distinct. Here, the signal acquisition
process is described by a single-input multi-output (SIMO)
convolutional system model. Since only the observed signals
are available, the estimation of the multiple channels needs to
be carried out blindly.

For the centralized blind identification of SIMO systems,
a great number of algorithms are included in [2] and the refer-
ences therein. Generally, there are two kinds of deterministic
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Fig. 1. Source signal acquisition by multiple agents in a net-
work.

algorithms for blind system identification: maximum likeli-
hood method [3, 4, 5] and subspace-based method [6, 7]. The
maximum likelihood method aims to maximize a nonlinear
likelihood function using iterative optimization methods, so
the final solution is sensitive to the selected initial condition.
Although the adaptive algorithm presented in [5] can obtain a
global optimal solution, it is very computationally expensive
so that its applications may be limited. The subspace-based
method can obtain an optimal solution by eigenvalue decom-
position; however, it requires huge storage space and heavy
instantaneous computational burden. To mitigate such a prob-
lem, several adaptive algorithms have been proposed, such as
adaptive least squares smoothing algorithm [8] and stochastic
approximation based algorithm [9].

For the networked SIMO system as shown in Fig 1, we
consider the distributed blind channel identification using
only the acquired signals. It is noteworthy that a distributed
blind adaptive algorithm was developed in [10] for con-
stant modulus restoration; however, it is different from our
work in the following aspects: (a) it does not deal with the
explicit estimations of the multiple channels; (b) all sen-
sors are linked by a Hamiltonian cycle rather than a general
communication topology. The developed distributed blind
estimation algorithms in the present paper adapt the blind
system identification technique for the sensor network based
applications. They are carried out by information exchanges
among neighboring agents without the need of fusion cen-
ters, hence reducing the requirements of the storage space
and the computational capability for a single agent. Al-
though the centralized algorithms in [9, 11] can be realized
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in distributed environments; however, when there exist mea-
surement noises, it will lead to a trivial solution. To cope
with the above mentioned problem, we shall develop a stable
distributed algorithm by combining the self-stabilized minor
subspace rule [12] and the cross relation equalities [7].

2. PROBLEM FORMULATION

The signal acquisition process is described by an SIMO sys-
tem as follows:

xi(n) = Hi(q)s(n) =
M∑
k=0

hi,ks(n− k),

yi(n) = xi(n) + wi(n) i = 1, 2 · · ·L,
(1)

where s(n) is the source signal, wi(n) is the measurement
noise, yi(n) is the observation of the i-th sensor, L is the num-
ber of sensors, Hi(q) =

∑M
k=0 hi,kq

−k denotes the transfer
function of the i-th channel, and q−1 denotes the backward
shift operator in time domain.

Throughout the paper, the following standard assump-
tions are made.
A1. All transfer functions {Hi(q)}Li=1 do not share common
zeros and the maximum channel order M is known.
A2. The deterministic source signal s(n) has linear complex-
ity larger than or equal to 2M+1.
A3. The measurement noise wi(n) is independent of s(n).

In Assumption A2, the linear complexity of s(n) is de-
fined by the least value of c for which there exist {γi}ci=1

such that s(n) =
∑c

i=1 γis(n− i) for all n ≥ c.
We assume that the data transmissions are perfect with-

out any distortion and information exchanges only take place
among neighboring agents. An L × L non-negative weight
matrix C is introduced to describe the bidirectional topol-
ogy of a network. If there is a link between agents i and j,
ci,j > 0; otherwise, ci,j = 0. The value of ci,j represents the
weight that agent i gives to the estimate received from agent
j. Besides Assumptions A1-A2, we also require the follow-
ing assumption:
A4. C is a symmetric stochastic matrix and the communica-
tion topology is strongly connected.

3. DISTRIBUTED IDENTIFICATION UNDER
NOISE-FREE MEASUREMENTS

In this section, we try to identify the transfer functions
{Hi(q)}Li=1 using the observations {xi(n)}Li=1 from the
multiple agents which are connected by a specified topology.

Suppose that the observation samples of {xi(n)}L,N
i=1,n=0

are available with N ≥ 4M . The matrix-vector multiplica-
tion form of (1) is written by

x = Hs (2)

where x = [x1 · · ·xL]
T , xi = [xi(N) · · ·xi(M)]

T , s =

[s(N) · · · s(0)]T , H =
[
HT

1 · · ·HT
L

]T
,

Hi =

⎡
⎢⎣ hi,0 · · · hi,M

. . .
. . .

hi,0 · · · hi,M

⎤
⎥⎦
(N−M+1)×(N+1)

.

Denote by hi = [hi,0 · · ·hi,M ]
T . The matrix form of the

cross relation equation between sensors i and j is written by
[7]:

[−X j X i]

[
hi

hj

]
= 0,

where X i =

⎡
⎢⎣ xi(N) · · · xi(N −M)

... . .
. ...

xi(2M) · · · xi(M)

⎤
⎥⎦. The cross

relation equation does not contain the source signal and is
linear with respect to hi; thus, it is often used for the blind
identification of practical systems. In a networked system,
since only neighboring agents can exchange their informa-
tion, a cross relation equation can be constructed from the ob-
servations of two neighboring sensors. This is the key point
to design a distributed estimation algorithm.

Given the weight matrix C, we define an augmented cross
relation matrix X whose rows are given by

[0 · · · 0︸ ︷︷ ︸
i−1 block entries

−X j 0 · · · 0︸ ︷︷ ︸
J−i−1 block entries

X i 0 · · · 0]

where ci,j > 0 and 1 ≤ i < j ≤ L. Denote by h =

[h1, · · · ,hL]
T . Under Assumption A4, the coefficient vector

h for all channels can be estimated as a non-trivial solution of
the following equation [13]:

Xh = 0. (3)

The above equation can be solved using the stochastic op-
timization method [9] in a centralized manner as follows:

ĥ(k + 1) = ĥ(k)− αkXHX ĥ(k), (4)

where αk is the step size which satisfies the following stan-
dard assumption:
A5. αk > 0, αk+1 ≤ αk, αk → 0 as k → ∞, and∑∞

k=1 αk = ∞.
In a large-scale sensor network, each agent carries out es-

timations based on only its own and neighboring information;
thus, we need to decentralize the computation in (3). To this
end, the estimate of hi at the agent i is updated as follows:

ĥi(k+1) = ĥi(k)−αk

∑
j∈N (i)

(XH
j X jĥi(k)−XH

j X iĥj(k)),

(5)
where N (i) denotes the index set of the i-th agent’s neigh-
bors.

For the distributed blind channel estimation in (5), it has
the following convergence property.
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Theorem 1 Assume that Assumptions A1-A5 hold. Denote

by h∗ a nontrivial solution of the equation (3). If the ini-

tial condition ĥ(0) is not orthogonal to h∗, then the estimate

ĥ(k) =
[
ĥT
1 (k) · · · ĥT

L(k)
]T

generated by the distributed al-

gorithm in (5) satisfies that ĥ(k) → h∗(h∗)H ĥ(0)
‖h∗‖2 as k → ∞.

Due to space limitations, the theorems in this paper are
provided without detailed proofs.

4. DISTRIBUTED IDENTIFICATION WITH NOISY
MEASUREMENTS

In this section, the distributed identification of {Hi(q)}Li=1

with noisy measurements {yi(n)}Li=1 will be investigated. All
the notations are the same with the previous section, and all
xi(n) related notations will be replaced by those of yi(n).

Due to the noise effect for the system model in (1), the
matrix YHY may have full rank, namely it may not have any
zero eigenvalue. According to the convergence analysis in the
previous section, if we still use the distributed algorithm in the
previous section, the estimate of h will converge to a trivial
solution. To overcome such a problem, the following cen-
tralized iterative computation is adopted [12] for the channel
identification:

ĥ(k + 1) = ĥ(k)− αk‖ĥ(k)‖4YHYĥ(k)

+ αkĥ(k)ĥ
H(k)YHYĥ(k).

(6)

The underlined terms in the above equation are two global
variables, which need to be estimated before decentralizing
the computations in each iteration. The two global variables
can be represented as follows:

‖ĥ(k)‖4 = L2

(
1

L

L∑
i=1

‖ĥi(k)‖2
)2

,

‖Yĥ(k)‖2 =
L

2

⎛
⎝ 1

L

L∑
i=1

∑
j∈N (i)

‖Y iĥj(k)−Yjĥi(k)‖2
⎞
⎠ .

(7)

It is easy to see that the global variables can be estimated
using the average consensus techniques.

Denote φi(k) = ‖ĥi(k)‖2 and φ(k) = [φ1(k) · · ·φL(k)]
T .

Let ϕi =
∑

j∈N (i) ‖Yjĥi(k) − Y iĥj(k)‖2 and ϕ(k) =

[ϕ1(k) · · ·ϕL(k)]
T . Provided the weight matrix C and run-

ning R iterations of the average consensus operation, we can
obtain that

φ̄(k) = CRφ(k),

ϕ̄(k) = CRϕ(k),
(8)

where φ̄(k) =
[
φ̄1(k) · · · φ̄L(k)

]T
and ϕ̄(k) = [ϕ̄1(k) · · ·

ϕ̄L(k)]
T . Then, the estimates of ‖ĥ(k)‖4 and ‖Yĥ(k)‖2

obtained by agent i are L2φ̄2
i (k) and L

2 ϕ̄i(k), respectively.
Therefore, the corresponding estimation for the i-th channel
using the noisy measurements can be carried out as follows:

ĥi(k + 1) = ĥi(k)− αkL
2φ̄2

i (k)
∑

j∈N (i)

(
YH

j Yjĥi(k)

−YH
j Y iĥj(k)

)
+

αkL

2
ϕ̄i(k)ĥi(k).

(9)

The proposed distributed identification algorithm is summa-
rized in Algorithm 1.

Algorithm 1 Distributed blind system identification
1) Given the initial conditions ĥi(0) for i = 1, · · · , L.
2) Run the average consensus: φ̄(k) = CRφ(k).
3) Run the average consensus: ϕ̄(k) = CRϕ(k).
3) for i = 1 : L (in parallel)
4) Update ĥi(k) according to (9).
5) end for
6) k ← k + 1 and go to 2).

The proposed distributed identification algorithm using
noisy measurements has the following convergence proper-
ties.

Theorem 2 Assume that Assumptions A1-A5 hold. Let η be

the second largest eigenvalue of C in modulus. If the number

of consensus iterations R is large enough such that ηR � 1,

then the estimate ĥ(k) generated from Algorithm 1 satisfies

the following inequality when k → ∞:

1− LηR

1 + 2LηR
+O(η2R) ≤ ‖ĥ(k)‖2 ≤ 1 + LηR

1− 2LηR
+O(η2R).

Remark 1 In the distributed algorithm, the estimation errors

of the two global variables are reflected by ηR, i.e. the larger

the number of average consensus iterations, the smaller the

corresponding estimation errors. According to the result in

the above theorem, the norm of ĥ(k) approaches to one as

R → ∞. When R is fixed, then the estimate of the channel

coefficients will be bounded in a region around the unit circle.

Theorem 3 Assume that Assumptions A1-A5 hold. Assume

also that YHY has a smallest eigenvalue with multiplicity

one and h� is the corresponding normalized eigenvector. The

estimate ĥ(k) generated from Algorithm 1 converges to a sta-

tionary point h0 which satisfies that

min
|κ|=1

‖h0 − κh�‖ ≤ c0Lη
R +O(η2R),

where κ is to eliminate the scalar ambiguity,

c0 =

{ 3ρ
min{λmin,λsse−λmin} λmin > 0

3
2 λmin = 0,

where ρ, λmin and λsse denote the spectrum, the smallest

eigenvalue and the second smallest eigenvalue of YHY .
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Remark 2 In the above theorem, we assume that YHY
has only one smallest eigenvalue. Otherwise, if the smallest

eigenvalue of YHY has multiplicity two, then even the cen-

tralized blind identification algorithm may fail to obtain an

accurate channel estimation. For the blind system identifica-

tion, even if the result is normalized, there exists a unit norm

scalar ambiguity. To this end, κ is introduced to eliminate the

ambiguity in the above theorem. In addition, we can observe

from the above results that the channel estimation perfor-

mance may be seriously degraded when the least non-zero

eigenvalue of YHY is small or the two smallest eigenvalues

of YHY are very close.

5. NUMERICAL SIMULATIONS

In this section, two simulation examples are provided to show
the performances of the proposed algorithms: one uses noise-
free measurements and the other uses noisy measurements.
The considered topology is shown in Fig. 2. The Metropolis-

��

��

�� �

��

��

Fig. 2. Topology of a six-agent network.

based wight matrix is used [14], which is defined by

ci,j =

⎧⎨
⎩

1
1+max{|N (i)|,|N (j)|} sensors i and j are linked,

1−∑
j �=i ci,j i = j,

0 otherwise.

where |N (i)| denotes the number of neighbors for agent i. All
the channel coefficients and the source signal are randomly
generated such that Assumptions A1-A2 are satisfied with
probability one. The step size is defined by αk = 1

k so that
Assumption A5 is satisfied. To measure the identification per-
formance, we define the normalized error as minγ ‖γĥ(k)−h∗‖

‖h∗‖ ,

where ĥ(k) is the estimate of the coefficient vector at the k-th
step and h∗ denotes the true coefficient vector. The number
of consensus iterations is set to R = 50.

Fig. 3 shows the identification performance of the algo-
rithm in Section 3 with noise-free measurements. It can be
found that the channel estimations corresponding to differ-
ent agents converge after about 800 iterations. In addition,
the associated normalized estimation errors converge to zero,
namely the multiple channels can be accurately determined
up to a scalar constant. Fig. 4 shows the identification perfor-
mance of Algorithm 1 under noisy measurements, where the
signal noise ratio is set to 20dB. We can find that the channel
estimations converge after around 800 iterations. However,
the normalized estimation errors of the multiple channels de-
viate from zero, which are caused by the measurement noises.
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Fig. 3. Identification performances using noise-free measure-
ments.
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Fig. 4. Identification performances using noisy measure-
ments.

6. CONCLUSION

In this paper, we have developed distributed blind system
identification methods in the context of sensor networks.
The key to the proposed algorithms lies in the adaption of
the associated cross relation equations to the networked sys-
tems, namely one pair of neighboring agents can generate
a cross relation equation by exchanging their information.
The convergence properties of the proposed algorithms have
been analyzed and simulation examples have been provided
to validate the developed algorithms. In our future work, the
proposed distributed identification algorithm will be extended
for the recursive blind system identification, for which the es-
timation errors of the multiple channels can be reduced by
adopting more observation samples.
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