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ABSTRACT
Distributed detection in censoring sensor networks, where each sen-
sor transmits “informative” observations to the Fusion Center (FC),
and censors those deemed “uninformative”, has been investigated
by many researchers, but under the assumption of conditionally in-
dependent observations. In this paper, we consider a more realis-
tic situation in a censoring sensor network where observations may
not be independent. We derive optimal fusion rules at the FC un-
der both Neyman-Perason (NP) and Bayesian frameworks, assuming
that each sensor sends complete observations to the FC only when its
observation falls out of a certain no-send region. Simulation results
are provided to demonstrate the superior performance of our fusion
rule compared with several other fusion rules derived in earlier work.

Keywords: Distributed detection, Censoring, Dependent ob-
servations

1. INTRODUCTION

Advances in computational capabilities of the constituent sensor
nodes inspired a surge of interest in decentralized detection in which
the local sensors send their decisions instead of raw observations
to the FC where the final decision is made according to a certain
fusion rule [1, 2]. A relatively new transmission efficient distributed
detection framework is based on a send/no-send idea. The sensors
“censor” their observations according to a censoring mechanism to
reduce data transmission. Thus, only a subset of measurements are
transmitted to the FC for decision making. It is shown in [3] that
with conditionally independent sensor data, if the local likelihood
ratio falls in the “no-send” interval, transmission dose not take place,
under both NP and Bayesian frameworks.

The authors in [3–5] have considered distributed detection with
censored observations. However, they have assumed conditionally
independent sensor observations, which may not be valid in many
real life situations. Since sensors that are distributed in the area
of interest observe the same phenomenon, it is highly probable that
their measurements are dependent, especially when the sensors are
geographically close to each other and thus their measurements are
likely to be contaminated by the same noise source. The effect of
dependence on the performance of distributed detection has been in-
vestigated in the literature [6, 7].

In this paper, we consider detection with censoring sensors un-
der dependent observations and focus on the design of the fusion rule
at the FC for a given censoring scheme at local sensors. We derive
the optimal fusion rule under both NP and Bayesian frameworks and
compare the performance of our fusion rule with other strategies in a
censoring sensor network. Our fusion rule, by taking the dependence
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among sensors’ observations into consideration, can improve the de-
tection performance of a censoring sensor network without violating
the communication constraints.

In [8], the authors analyzed the distributed detection problem
in a censoring sensor network with correlated observations and
proposed a modified Generalized Likelihood Ratio Test (mGLRT).
However, they made the assumption that when no sensor sends their
data, the FC decides H0, which may not be a good strategy. This
is because sensors censor their data only when their observation is
not “informative”, and neither H1 or H0 is implied. In addition,
their analysis ignores local sensors’ censoring scheme in fusion rule
design.

The idea of censoring has also been applied for data reduction in
Wireless Sensor Networks (WSNs) for estimation application in [9].
The canonical decentralized detection problem with each sensor em-
ploying an on/off signaling scheme is considered in [10], integrating
fading transmission channels in the fusion algorithm design. In [11],
a new framework for sequential Bayesian estimation in a censoring
sensor network is proposed.

The outline of this paper is as follows. In Section 2, the mea-
surement model as well as the detection problem is described. In
Section 3, the problem of detection with a subset of measurements is
identified as a composite hypothesis problem in the NP framework.
In Section 4, we derive an optimal fusion rule which minimizes the
probability of error in the Bayesian sense. Simulation results are
provided in Section 5. Section 6 concludes the paper and discusses
the future work.

2. PROBLEM FORMULATION

We consider a distributed detection network consisting of two sen-
sors where the FC also makes its own observations. The FC com-
bines messages from the sensors and its own observations to deter-
mine the true state of nature H as H0 (null) or H1 (target). We de-
note the complete set of sensors’ observations as X = [X1, X2] and
FC’s observations as X0. Observations are not independent, given
Hi, i = 0, 1, namely, p(x, x0|Hi) 6= p(x1|Hi)p(x2|Hi)p(x0|Hi),
where p(·|Hi) is the conditional probability density function (pdf)
under hypothesis Hi. The joint distribution p(x1, x2, x0|Hi) is
known at the FC. Each sensor node computes a local output gn(xn)

based on its observations xn, n = 1, 2 and a predefined censoring
scheme which takes the following form:

gn(xn) 2 R
0
n gn(xn) is sent

gn(xn) 2 R0
n nothing is sent

(1)

where the no-send region R0
n satisfies a communication constraint

under H0, i.e., P (gn(Xn) 2 R0
n|H0) = k , where k 2 (0, 1)
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in the NP framework and satisfies an average communication
constraint, i.e., P (gn(Xn) 2 R0

n|H0)P (H0) + P (gn(Xn) 2
R0

n|H1)P (H1) = k , in the Bayesian framework. It is proved in [3]
that given conditionally independent observations, the optimal gn(·)
is the likelihood ratio function in both NP and Bayesian frameworks,
i.e., gn(xn) = ln(xn) = p(xn|H1)/p(xn|H0) and R0

n is a single
interval, i.e., R0

n = [tn,l, tn,u], where tn,l and tn,u are respectively
the lower limit and the upper limit of the censoring region. The
intuition behind this censoring scheme is that the larger or smaller
the ln(xn) is, the more confidence one has about H1 or H0, thus
ln(xn) 2 [tn,l, tn,u] does not indicate a strong preference for either
H1 or H0 and is deemed “uninformative”.

For the case of dependent sensor observations, we assume that
the censoring scheme at the local sensors takes the following form

xn 2 Rn xn is sent

xn 2 Rn nothing is sent
(2)

where Rn = l�1
n (R0

n) and Rn = l�1
n (R

0
n). Recall that if the ratio

of two pdfs is non-decreasing in the argument xn, we say that they
have Monotone Likelihood Ratio Property (MLRP) in xn. For distri-
butions satisfying MLRP, Rn preserves the single interval property.

We assume that the censoring scheme in (2) is known at the FC.
We are interested in finding the optimal fusion rule �0 under NP and
Bayesian criteria. Note that �0 is a binary valued function of the re-
ceived data and the censoring scheme. The design of the fusion rule
includes consideration of inter sensor dependence and the censoring
mechanism.

3. NEYMAN-PEARSON FRAMEWORK

Let the probability of detection and probability of false alarm be de-
fined as PD = E[�0|H1], PF = E[�0|H0], where E[·|Hi] denotes
conditional expectation under Hi. The optimal fusion rule in the
NP sense would be the one that maximizes the probability of detec-
tion PD subject to the constraint that PF is no greater than ↵, i.e.,
maxPD subject to PF  ↵.

In a two sensor network, at the FC, depending on which sensor’s
observations are received, there are four possible situations:

Hi : {(0, 0, x0), (0, x2, x0), (x1, 0, x0), (x1, x2, x0)}, i = 0, 1 (3)

where x0 is the observation at the FC, x1, x2 are the received data at
the FC from sensor 1 and sensor 2, respectively and a 0 represents the
fact that the sensor’s observation is in the no-send region and thus not
available at the FC. We apply the Neyman-Pearson theorem [12, see
Section 6.4] to each of the four cases. For the cases when not all
sensors’ observations are received at the FC, we convert this simple
binary hypothesis testing problem to a composite hypothesis testing
problem in which the observations that are not received are treated
as the unknown parameters, as in [8]. The authors in [8] modeled
the unknown parameters as deterministic and developed a modified
Generalized Likelihood Ratio Test (mGLRT) for this problem.

We model the unknown parameter as a random variable and use
the Bayesian approach [12] to deal with the composite hypothesis
testing problem. The likelihood ratio is calculated in the following
way:

p(x |H1)

p(x |H0)
=

R
p(x |✓1;H1)p(✓1)d✓1R
p(x |✓0;H0)p(✓0)d✓0

(4)

where p(x |✓i;Hi), i = 0, 1 are the pdfs of data x given the param-

eter ✓i. We treat the received xn, n = 0, 1, 2 as the sample data x in
(4), and the censored random variables as the unknown parameters
with a different prior pdf under each hypothesis. The likelihood ratio
in (6) for decision making is obtained by letting x = {xn : xn 6= 0}
and ✓i = {Xn|Hi : xn = 0}. The decision rule at the FC is

�0 =

⇢
1 L � ⌧
0 otherwise (5)

where ⌧ is the threshold that satisfies PF = ↵ and the likelihood
ratio L at the FC for the four cases is:

L =

8
>>>>>>><

>>>>>>>:

p(x0,x1,x2|H1)
p(x0,x1,x2|H0)

both send
R
R1

p(x2,x0|x1,H1)p(x1|H1)dx1R
R1

p(x2,x0|x1,H0)p(x1|H0)dx1
only 2 sends

R
R2

p(x1,x0|x2,H1)p(x2|H1)dx2R
R2

p(x1,x0|x2,H0)p(x2|H0)dx2
only 1 sends

R
R1,R2

p(x0|x1,x2,H1)p(x1,x2|H1)dx1dx2R
R1,R2

p(x0|x1,x2,H0)p(x1,x2|H0)dx1dx2
both censor

(6)

We can see from (6) that if none of the sensors’ observations is
censored, then the test is equivalent to a simple hypothesis test-
ing problem and the test statistic is the likelihood ratio as that in
centralized detection. When observations are independent, the test
statistics becomes the product of likelihood ratios in the send re-
gion and fixed ratios of probabilities in the no-send region, which is
P (Xn 2 Rn|H1)/P (Xn 2 Rn|H0).

The optimality of the fusion rule �0 in (5) over any other fusion
rule �

0
0 can be shown for the four cases. We demonstrate this with

the case that sensor 1 transmits and sensor 2 censors. Let �
0
0 be a

fusion rule that also satisfies the false alarm constraint. Based on the
definition of the fusion rule in (5), we have

✓Z

R2

p(x1, x2, x0|H1)dx2 � ⌧

Z

R2

p(x1, x2, x0|H0)dx2

◆

[�0(x1, x0, R2)� �
0
0(x1, x0, R2)] > 0, 8x1 2 R1 (7)

After integrating over x1 2 R1 and x0, we get PD(�0) � PD(�
0
0).

Similar results can be obtained for the other three cases as well, so
�0 is the optimal fusion rule with censored observation under the NP
framework.

This fusion rule can be easily extended to a network with
N(N > 2) sensors. Let the random vector XN = [X1, . . . , XN ]

denote observations from the set of sensors N = {1, . . . , N}. For
the censoring scheme given in (2), we define a new random variable
Zn = I(xn 2 Rn), which takes binary values {1, 0}, to indicate
whether a certain observation xn is available or not at the FC. We
further define two sets: C = {n : Zn = 0} and S = {n : Zn = 1},
to represent respectively the set of sensors whose observations are
censored and the set of sensors whose observations are sent to the
FC. The optimal fusion rule is in the form (5) with the likelihood
ratio given by:

L =

R
· ··

R
x
n

2R
n

,8n2C p(x0,xS |xC, H1)p(xC |H1)dxCR
· ··

R
x
n

2R
n

,8n2C p(x0,xS |xC, H0)p(xC |H0)dxC

(8)

where xC = [xn : n 2 C] and xS = [xn : n 2 S].
In (8), XC is viewed as the unknown parameter with cor-

responding prior distributions p(xC |Hi) under each hypothesis.
By assuming independent observations, namely p(x0,xN |Hi) =
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QN
n=0 p(xn|Hi), i = 0, 1, (8) reduces to

L =

Y

n2C

P (Xn 2 Rn|H1)

P (Xn 2 Rn|H0)

Y

n2S

p(xn|H1)

p(xn|H0)
(9)

which corresponds to the optimal fusion rule derived under indepen-
dent observations in [3, 4].

4. BAYESIAN FRAMEWORK

In this section, we consider the optimal fusion rule with censoring
sensors in a Bayesian framework. Let the prior probability of the
two hypotheses be ⇡i = P (Hi), i = 0, 1. Let the probability of
missed detection and probability of false alarm be defined as PM =

1�E[�0|H1] and PF = E[�0|H0]. We consider the probability of
error Pe = ⇡1PM + ⇡0PF which can be further expanded as the
following:

Pe� ⇡1 =

⇡0P (decide H1|H0)� ⇡1P (decide H1|H1)

=

R
�0[⇡0p(x0, x1, x2|H0)� ⇡1p(x0, x1, x2|H1)]dx1dx2dx0

=

R
R1R2

�0(x0, x1, x2)
⇥
⇡0p(x0, x1, x2|H0)

�⇡1p(x0, x1, x2|H1)
⇤
dx1dx2dx0

+

R
R1

�0(x0, x1, R2)
⇥
⇡0

R
R2

p(x0, x1, x2|H0)dx2

�⇡1

R
R2

p(x0, x1, x2|H1)dx2

⇤
dx1dx0

+

R
R2

�0(x0, R1, x2)
⇥
⇡0

R
R1

p(x0, x1, x2|H0)dx1

�⇡1

R
R1

p(x0, x1, x2|H1)dx1

⇤
dx2dx0

+

R
�0(x0, R1, R2)

⇥
⇡0

R
R1,R2

p(x0, x1, x2|H0)dx1dx2

�⇡1

R
R1,R2

p(x0, x1, x2|H1)dx1dx2

⇤
dx0 (10)

To minimize Pe, one can minimize each of the four terms on the
right hand side. The approach is to set �0 = 1 when the term in the
bracket is less than zero and �0 = 0, otherwise. This results in an
optimal decision rule in the following form

�0 =

⇢
1 LB � ⇡0/⇡1

0 otherwise (11)

where

LB =

8
>>>>>>><

>>>>>>>:

p(x0,x1,x2|H1)
p(x0,x1,x2|H0)

both send
R
x22R2

p(x0,x1,x2|H1)dx2R
x22R2

p(x0,x1,x2|H0)dx2
only 1 sends

R
x12R1

p(x0,x1,x2|H1)dx1R
x12R1

p(x0,x1,x2|H0)dx1
only 2 sends

R
x12R1,x22R2

p(x0,x1,x2|H1)dx1dx2R
x12R1,x22R2

p(x0,x1,x2|H0)dx1dx2
both censor

(12)

The result can be generalized to a sensor network with N(N > 2)

sensors. By minimizing the probability of error at the FC, the op-
timal fusion rule we obtain is of the form (11) with the following
likelihood ratio:

LB =

R
· ··

R
x
n

2R
n

,8n2C p(x0,xN |H1)dxCR
· ··

R
x
n

2R
n

,8n2C p(x0,xN |H0)dxC
(13)

where the notations follow those in Section 3. The optimal fusion
rule which minimizes the probability of error at the FC with depen-
dent observations generalizes the fusion rule with independent sen-

sor observations in [3, 4]. We also notice that the likelihood ratio in
this optimal decision rule in the Bayesian framework is of the same
form as that in our proposed fusion rule in the NP framework.

5. RESULTS AND DISCUSSION

In this section, we compare our proposed fusion rules with other
fusion methods in both NP and Bayesian frameworks through simu-
lations. A two sensor network is considered in our simulation study.
It is assumed that the joint distribution of sensors’ and the FC’s ob-
servations follow a multivariate Gaussian distribution under both hy-
potheses.

H1 : [X0, X1, X2] ⇠ N(µ,⌃1)

H0 : [X0, X1, X2] ⇠ N(0,⌃0) (14)

where µ 6= 0 is the mean under H1 and ⌃1,⌃0 are covariance ma-
trices with non-zero off-diagonal elements (dependence among ob-
servations). Since the multivariate normal distribution satisfies the
monotone likelihood ratio property, we set the no-send region to be
a single interval and identical censoring schemes are employed at
both sensors.

Compared with the centralized method, decentralized detection
with censoring sensors has a suboptimal performance, but achieves
better communication efficiency. Only when all the sensors’ obser-
vations fall in their send region, the decentralized method performs
as well as the centralized method. Thus, the performance of central-
ized detection provides an upper bound for our proposed approach.
For performance comparison, we employ a simpler fusion rule as-
suming independent observations that uses the expression in (9) for
the test. Another fusion rule for performance comparison is based
on ignoring the censored observations, which uses only the received
observations’ likelihood ratios for decision making.

The performance of the fusion rule based on our approach is
depicted in Figure 1. The ROC curve corresponding to our pro-
posed approach is upper bounded by the centralized method. By as-
suming conditional independence, the performance is degraded but
computation at the FC is reduced. Similarly, computation efficiency
is achieved at the cost of sacrificing detection performance for the
fusion rule which uses the likelihood ratios of only the received ob-
servations.

We also compare the performance of our proposed fusion rule
with the mGLRT in [8], which first estimates the observations that
are not received using the received data by maximum likelihood es-
timation (MLE), then replaces them with their ML estimates in the
likelihood ratio test. For example, in a two sensor network when x1

is censored and x2 is transmitted, according to mGLRT the likeli-
hood ratio at the FC is

maxx1 p(x1, x2, x0|H1)

maxx1 p(x1, x2, x0|H0)

It is shown in Figure 1 that the fusion rule based on ignoring cen-
sored observations performs even better than mGLRT. The reason
is that according to [8], the test statistic for mGLRT is a function
of only the received observations at the FC, which may not be the
likelihood ratio, however, by NP theory, the optimal function is the
likelihood ratio function, which is exactly what we get by ignoring
censored observations.

Taking the prior information that once an observation is not re-
ceived at the FC, it must fall in the no-send region, into consider-
ation, we modify the mGLRT by maximizing the likelihood within
no-send regions to obtain the MLEs. The test at the FC uses the
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following statistic

maxx12R1
p(x1, x2, x0|H1)

maxx12R1
p(x1, x2, x0|H0)

and we name this fusion rule the mGLRT2. The optimality of
mGLRT2, compared with the method of ignoring censored obser-
vations, depends on the form and size of the no-send region Rn.
The optimal fusion rule we proposed in this paper has a better
performance than the other fusion schemes.

Fig. 1. ROC curves for different fusion rules with multivariate nor-
mal distributed data

Fig. 2. Probability of error vs ⇡0 under different fusion rules with
multivariate normal distributed data

In the Bayesian framework, the probability of error, as a function
of ⇡0 is shown in Figure 2. It can be seen that the centralized method
performs the best, followed by our optimal fusion rule in the censor-
ing sensor network. The other two approaches are outperformed by
our proposed fusion rule in this paper. However, in the low ⇡0 re-
gion, the fusion rule assuming independence has better performance
than the other one which ignores unreceived data, and in the high ⇡0

region, the opposite happens. The reason for that is, the performance
of the two fusion rules depends on which one of the four cases (case
1: both send; case 2: sensor 1 sends, sensor 2 censors; case 3: sen-
sor 1 censors, sensor 2 sends; case 4: both censor) occurs. For the
last three cases, the fusion rule which assumes independence has a
better performance than the fusion rule that ignores censored data,
and it is the other way around for the first case. In our experiment,
the parameters are such that the probability of the last three cases
decreases with ⇡0, thus the fusion rule assuming independence out-
performs when ⇡0 is small and is overtaken by the other fusion rule
as ⇡0 increases.

Fig. 3. ROC curve of different fusion rules with heterogeneous de-
pendent data

Fig. 4. Probability of error vs ⇡0 under different fusion rules with
heterogeneous dependent data

We also compare the performance of different algorithms with
heterogeneous dependent data. The heterogeneity comes from the
fact that the observations from different sensors follow disparate pdfs
and the dependence is described by a copula [13] which is a function
that maps marginal density functions to a valid joint distribution.
In the simulation, we assume that one sensor’s observation follows
exponential distribution and the other sensor’s and fusion center’s
observations follow Gaussian distribution. And a Gaussian Copula
is used to model the dependence among data. The results in Figure 3
and Figure 4 demonstrate the superior performance of our proposed
fusion rule compared to other fusion rules under both frameworks.

6. CONCLUSION AND FUTURE WORK

In this paper, we investigated the distributed detection problem in
a censoring sensor network with dependent observations. For given
censoring schemes, we focused on the design of the fusion rule at the
FC in both NP and Bayesian frameworks. Simulation results were
also provided, showing that our proposed fusion rules in both frame-
works perform better than the other methods. Since the expression of
the likelihood at the FC in both frameworks involves multiple inte-
grations, the computational complexity is prohibitive when the num-
ber of sensors is large. Our future work includes approximating the
likelihood ratio in an efficient way to reduce computational complex-
ity and designing optimal or suboptimal local censoring schemes.
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