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ABSTRACT

Desynchronization is a fundamental approach in wireless
sensor networks that allows for convergence to time-division
multiple access (TDMA) of the medium without the need
for clock synchronization and centralized coordination. The
method is based on the concept of reactive listening of peri-
odic fire message broadcasts between nodes sharing the given
spectrum. We propose a novel framework to estimate the
required iterations for convergence to fair TDMA scheduling.
Unlike previous conjectures or bounds found in the literature,
our estimation framework is based on a stochastic modeling
approach. Experiments via imote2 TinyOS nodes and simu-
lations demonstrate that the proposed estimates characterize
the experimental desynchronization convergence iterations
significantly better than existing conjectures or bounds.

Index Terms—wireless sensor networks, desynchroniza-
tion, stochastic modeling, TDMA.

1. INTRODUCTION

Efficient usage of shared spectrum is key in wireless sensor
networks (WSNs), where packet losses because of collisions
translate to wasting battery resources [1–8]. Desynchroniza-
tion is a primitive leading to fair time-division multiple access
(TDMA) scheduling without requiring clock synchronization
among sensors or a coordinating node [3, 4, 6, 7, 9–13]. The
key concept behind desynchronization is reactive listening,
according to which, nodes periodically broadcast fire mes-
sages and then update their next broadcast time based on the
reception of fire messages from other nodes. After a number
of iterations, where nodes adjust their firing times, a steady-
state (SState) period is achieved. In SState, nodes have con-
verged into fair TDMA scheduling and fire messages are sent
in periodic intervals of T seconds, followed by data packets.

1.1. Relation to Prior Work

In all desynchronization methods for WSNs [3, 4, 12], the
number of convergence iterations required until the steady
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state plays a crucial role in latency, energy and bandwidth ef-
ficiency of WSN deployments. Moreover, deriving estimates
for the convergence iterations forms a crucial step in the ana-
lytic understanding of how the system evolves from a random
setup to the steady state [12].

Deriving closed-form estimates for the required conver-
gence iterations to SState is hard [2, 4, 9, 12] due to the
non-deterministic aspects of the desynchronization process,
namely, the random initial condition of the phases and the ran-
dom perturbations in the firing order of nodes due to noise.
Hence, existing works focus on order–of–convergence [4] or
lower bounds of convergence iterations of desynchroniza-
tion, proven or conjectured via experimentation [3, 9, 10, 12].
Moreover, these works consider only the noise-free case.

While order–of–convergence estimates provide a coarse
characterization of the convergence, they do not predict the
expected number of iterations required for desynchronization
to converge to the SState. On the other hand, the existing
lower bounds on the desynchronization convergence itera-
tions are currently given without a characterization on their
tightness to real-world experiments or simulations.

Instead, following a stochastic approach yields an ana-
lytic understanding of the behavior of the convergence. Par-
ticularly, it leads to closed-form expectations for the iterations
that should be a close match to experiments and simulations.
Such an approach was only followed in the work of Leiden-
frost and Elmenreich [2]. Their model, however, is applicable
to synchronization, and the required differences (i.e., differ-
ent phase update, reachback response and pre-emptive mes-
sage staggering [2]) do not permit a direct mapping of their
convergence estimates to desynchronization systems.

1.2. Contribution

In this paper, we address this issue proposing stochastic (in-
stead of deterministic) estimates for the convergence itera-
tions, focusing on the DESYNC primitive of Degesys et al.
[4, 9]. Specifically, we propose a novel analytic estimate for
the number of iterations until desynchronization is expected
to have converged to SState within a predetermined threshold.
We validate our results based on a real WSN deployment, as
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Fig. 1. The kth phase update of node “curr” when the next
fire message takes place in DESYNC.

well as under a simulation environment, and demonstrate the
superiority of the proposed stochastic estimates against the
existing convergence bounds in the literature [3, 4, 10, 12].

2. REVIEW OF DESYNCHRONIZATION

Consider a WSN with W fully-meshed nodes. Each node
performs a task with a period of T seconds [4]. Initially, each
node joins the network by broadcasting an initial fire message
at a random time between [0, T ] seconds. Upon the com-
pletion of its cycle (after T seconds), each node broadcasts a
fire message anew. For each node, the percentage of the way
through its cycle at a given time t ∈ [0, T ] is denoted as the
node’s phase, ϕ ∈ [0,1) [2–4, 14–17]. A firing cycle com-
prises W consecutive fire messages, each stemming from an
individual node in the WSN.

The fire messages’ phase values can be imagined as beads
moving clockwise on a ring with period T = 1s [4]. When
a node phase reaches unity, a fire message is broadcast and
the corresponding node’s phase is reset to zero. Fig. 1 illus-
trates three nodes that fire consecutively (phase neighbors1).
According to DESYNC [4, 9], the phase of node “curr” is up-
dated towards the middle of the interval between the phases
of fire messages from nodes “prev” and “next”, i.e.,

ϕ(k)curr = (1 − α)ϕ(k−1)curr +
α

2
(ϕ(k−1)prev + ϕ

(k−1)
next ) (mod1) , (1)

where α ∈ (0,1) is the phase-coupling constant that controls
the speed of the phase adaptation. This approach disperses all
fire message broadcasts at intervals of T

W
within each periodic

firing cycle. Thus, after kSState iterations of (1), DESYNC leads
to fair TDMA scheduling, where all fire messages are periodic
and the phase update of (1) leads to convergence to SState,
expressed by

∣ϕ(kSState)
curr − ϕ(kSState−1)

curr ∣ ≤ bthres, (2)

with bthres the preset convergence threshold e.g. bthres = 0.001.

1The notion of phase neighbors indicates temporal adjacency of fire mes-
sages and is independent of the nodes’ identity and physical location.

Assuming negligible propagation delay and error-free de-
tection of messages, it has been conjectured [3,4] that conver-
gence requires iterations of the order

kDESYNC,[3][4] ∼ O (
1
α

W 2 ln
1

bthres
) . (3)

This order estimate gives a coarse characterization for the
convergence iterations, but it cannot provide the expected
number of iterations until convergence to SState.

3. PROPOSED STOCHASTIC MODEL

Definition 1 (Phase Model): Every node’s initial phase (e.g.,
ϕ
(0)
curr, ϕ

(0)
prev, ϕ(0)next), is modeled by an independent random vari-

able, Φ(0), that is uniformly distributed in [0,1). Namely,
∀fire ∈ {. . . , prev, curr, next} ∶ Φ(0)fire ∼ P

Φ
(0)
fire

, with2

P
Φ
(0)
fire
= U (μ

Φ
(0)
fire

, σΦ(0)) (mod1) , (4)

where U(⋅) denotes the uniform probability density function
(PDF), with mean μΦ and standard deviation σΦ. We define
the mean times of successive phase updates to be equidistant,
i.e., μ

Φ
(0)
prev
− μ

Φ
(0)
curr
= 1

W
, μ

Φ
(0)
curr
− μ

Φ
(0)
next
= 1

W
. In the begin-

ning, all fire message broadcasts are completely uncoordi-
nated (random), i.e., σΦ(0) =

1√
12

. ∎
There is no loss of generality from the assumption of

equidistant means as the modulo operator in (4) ensures that
the PDF wraps around one such that Φ(0)curr is always uniformly
distributed between [0,1) irrespective of the assumed mean
values. However, we opt for the use of (4) as this facilitates
the mathematical exposition of the proposed estimates.

Definition 2 (Measurement Noise): Each phase in (1) is
assumed to be contaminated by additive white noise, i.e., Δ ∼
U (0, σΔ). ∎

Due to the measurement noise and the interaction between
fire message broadcasts, for each phase update k of each node,
the PDF of its phase, P

Φ
(k)
curr

, changes after applying (1). This
changes the probability of convergence to SState, as follows:

Pr [∣Φ(k)curr − μ
Φ
(k)
curr
∣ ≤ bthres] = ∫

bthres

−bthres

P
Φ
(k)
curr
(u − μ

Φ
(k)
curr
)du

= erf
⎛

⎝

bthres√
2σ

Φ
(k)
curr

⎞

⎠
, (5)

where erf (u) is the error function [18]. Notice that (5) holds
under the assumption that P

Φ
(k)
curr

converges to a normal dis-
tribution, which will be shown to be the case. We therefore
use a stochastic criterion for convergence based on the con-
fidence intervals of the normal distribution [18]. By defining
the confidence coefficient

cconf = Pr [∣Φ(k)curr − μ
Φ
(k)
curr
∣ ≤ bthres] , 0 < cconf < 1, (6)

2The use of the modulo operator in (4) is imposed because ϕfire ∈ [0,1).
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and replacing in (5), we reach that, for convergence under (5):

σ
Φ
(k)
curr
=

bthres√
2 × erf−1 (cconf)

. (7)

Thus, we determine the phase-update iteration kSState for
which σ

Φ
(kSState)
curr

is closest to the right-hand side of (7). That
is, we determine the phase update iteration leading to conver-
gence to SState with probability that closely matches cconf.

Definition 3 (Steady State): We define desynchronization
being in steady state with cconf × 100% confidence, at the
kSStateth phase-update iteration, where

kSState = arg min
∀k∈N
∣σ

Φ
(k)
curr
−

bthres√
2 × erf−1 (cconf)

∣ , (8)

with σ
Φ
(k)
curr

the standard deviation at the kth iteration of (1). ∎
Proposition 1. Under Definitions 1-3, the number of fir-

ing cycles for the DESYNC phase update to converge is

kdesync = arg min
∀k∈N
∣σ(k)desync −

bthres√
2 × erf−1 (cconf)

∣ , (9)

with

σ
(k)
desync =

¿
ÁÁÁÀ∥v(k)W ∥

2
σ2

Φ(0)
+

k

∑
j=1
∥v(j)W ∥

2
σ2

Δ, (10)

v = [ α
2

1 − α α
2
] , (11)

and

v(j)W = (v ∗ . . . ∗ v)W
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j times

,

produced by j consecutive circular convolutions of period W .
Proof: For the first firing cycle, we denote the initial phase

random variables by the 1 ×W vector

Φ(0) = [⋯ (Φ(0)prev)
prev

Φ(0)prev Φ(0)curr Φ(0)next ⋯] (12)

and the corresponding additive measurement noise sources
[independent identically distributed (i.i.d.) random variables]
from Definition 2 by the 1 ×W vector

Δ = [⋯ (Δprev)prev
Δprev Δcurr Δnext ⋯] . (13)

The number of elements before and after Φ(0)curr and Δcurr in
(12) and (13) depends on how many fire message broadcasts
precede or follow the broadcast under consideration within
the firing cycle. The first iteration of the phase update of (1)
is

Φ(1) = [v∗ (Φ(0) +Δ)]
W
(mod1) . (14)

The circular convolution performs periodic extension of the
phase and noise vectors of (12) and (13), which corresponds

to the circular dependency between consecutive firing cycles.
Due to this dependency, the exact number of elements before
and after Φ(0)curr and Δcurr does not affect Φ(1). Notice that
(14) holds under the assumption that the statistics of all phase
variables of all firings are “stale” [4,15], i.e., they correspond
to the initial state (Definition 1). This is because we do not
assume any knowledge of the order of firings (which may not
be fixed [12]). Thus, Proposition 1 makes use of the statistics
of the previous phase update iteration. From (14), we get

Φ(1)curr = (1 − α) (Φ(0)curr +Δcurr) (15)

+
α

2
(Φ(0)prev +Δprev +Φ(0)next +Δnext) (mod1) .

Thus, μ
Φ
(1)
curr
= μ

Φ
(0)
curr

and σΦ(1) = ∥v∥
√
(σ2

Φ(0)
+ σ2

Δ). Gener-
alizing (14) to k iterations, we reach

Φ(k) = (v(k)W ∗Φ(0))
W
+

k

∑
j=1
(v(j)W ∗Δ)

W
(mod1) (16)

where Δ is the i.i.d. measurement noise vector per itera-
tion. Therefore, we obtain μ

Φ
(k)
curr
= μ

Φ
(0)
curr

and σΦ(k) = σ
(k)
desync,

shown in (10). It can now be shown that the statistics of Φ(k)curr

satisfy the three conditions for the generalized form of the
central limit theorem to be applicable [18, pp. 219-220], and
thus Φ(k)curr becomes a normally-distributed random variable af-
ter a few phase updates, i.e.,

Φ(k)curr ∼ N (μΦ
(0)
curr

, σ
(k)
desync) (mod1) (17)

Hence, we reach (9) for convergence under Definition 3. ∎
Proposition 1 shows how kdesync is affected by α as well as

by the noise assumptions expressed by σΦ(0) and σΔ in Defi-
nitions 1 and 2. Interestingly, according to (9), the number of
nodes, W , does not influence the convergence to SState. This
contradicts the conjecture of Degesys et al. [4] given by (3).

In Definition 1, every node’s initial phase random vari-
able, i.e., Φ(0), was assumed to be i.i.d. uniform. However,
Proposition 1 holds for any i.i.d. random variable Φ(0) that
satisfies the three conditions for the generalized form of the
central limit theorem to be applicable [18, pp. 219-220].

4. EXPERIMENTAL VALIDATION

We conduct experiments using imote2 Crossbow sensors with
TinyOS1.x. The nodes use the IEEE 802.15.4 standard with
the default 2.4GHz Chipcon CC2420 transceiver. By mea-
suring the oscillatory behavior of each node’s phase in the
SState, the standard deviation of the oscillating phase around
the SState value of each node’s phase was σΔ = 0.34ms.
Also, the phase statistics over all nodes were confirmed as
marginally white. We present results under bthres = 0.001,
with coupling constants α ∈ {0.05, . . . , 0.95} and number of
nodes W ∈ {4,16}, where we use cconf = 1 − 10−4 to detect
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(b) W = 16, bthres = 0.001

Fig. 2. Required firing cycles for convergence to SState for DESYNC for various values of α. Vertical error bars correspond to
one standard deviation from the experimental (or simulation) mean values.

convergence. Each node reported the number of firing cycles
until convergence was detected via a special report message
to a base station listening passively to all messages. This en-
abled the automated collection of 50 such results per num-
ber of nodes and coupling constant. To cross-validate our re-
sults with simulations, we used the Matlab code of Degesys et
al. [4]. To simulate the noise conditions, we apply zero-mean
additive noise in the phase update with σΔ = 0.34ms and set
each node to misfire with probability 0.4% (300 Matlab runs
per pair {W,α}).

4.1. DESYNC Results

The results of the proposed model in relation to the experi-
mental measurements are shown in Fig. 2. We also include
the order–of–convergence conjecture of (3) [4], by scaling the
order estimate to fit within the range of the obtained experi-
ments and simulations. The results show that the WSN tends
to converge to steady state faster when α decreases (until α =
0.25), since the presence of measurement noise causes higher-
amplitude oscillations for strong coupling. However, for very
small values of α, the convergence iterations increase dramat-
ically due to weakened coupling between phase-neighboring
nodes. The proposed model is within the standard deviation
of the experimental results for all cases. As shown in Fig. 2,
previous estimates do not accurately match the behavior ob-
served in the convergence iterations. It is important to note
that contrary to the proposed model, previous estimates [4]
do not take into account the measurement noise conditions.
Moreover, the results of Fig. 2 show no statistical dependence
on W , which agrees with our analysis.

4.2. Indicative Application

Consider a WSN that initially comprises W nodes, where
nodes are expected to join or leave the network every Tswap

seconds. In fair TDMA scheduling, the bandwidth per node

is BWSN
W

bps, where BWSN is the maximum application-layer
bandwidth in IEEE 802.15.4 [4]. The fluctuating number of
nodes in the WSN will result in bandwidth loss as, each time
nodes join or leave, the system needs to converge to SState
before transmission resumes with equal slot size [4, 14, 19].
Using the proposed model, we can derive an estimate of the
expected bandwidth per node under such conditions. Specifi-
cally, if the DESYNC firing-cycle period is T seconds and the
node joining or exiting occurs (on average) every Tswap sec-
onds, the expected bandwidth per node can be estimated as
Bswap = (1 −

kdesyncT

Tswap
) BWSN

W
. The factor kdesyncT

Tswap
expresses the

normalized loss of bandwidth per node due to convergence to
TDMA.

Let a WSN comprising W = 10 nodes with T = 1s and
1 ∼ 3 nodes entering or exiting the network every Tswap s, with
Tswap ∈ [70,130]s. The proposed model provides the setting
for α that minimizes the convergence iterations (i.e., kdesync)
and leads to the maximum achievable bandwidth per node. In
particular, previous work used α = 0.95 instead of the best op-
tion, which according to our analysis is α = 0.25. Experimen-
tal results show that selecting α through the proposed model
brings gains of up to 13% in the bandwidth per node com-
pared with the standard settings used in existing works [3, 4].

5. CONCLUSIONS

A novel stochastic estimation framework for the conver-
gence iterations to fair TDMA scheduling is proposed for the
DESYNC primitive. Our analytic result is validated based on
simulations and experiments with a fully-meshed network of
wireless sensors. Our model can be used to estimate the best
operational parameters (and the associated delay) to establish
fair TDMA scheduling under several desynchronization-
based WSN protocols. In this way, it facilitates the analytic
understanding of the temporal evolution of the desynchro-
nization process in WSNs.
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