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Abstract—We introduce novel diffusion based adaptive estima-
tion strategies for distributed networks that have significantly less
communication load and achieve comparable performance to the
full information exchange configurations. After local estimates
of the desired data is produced in each node, a single bit of
information (or a reduced dimensional data vector) is generated
using certain random projections of the local estimates. This
newly generated data is diffused and then used in neighboring
nodes to recover the original full information. We provide the
complete state-space description and the mean stability analysis
of our algorithms.

Index Terms—Diffusion, distributed, single-bit, compressed.

I. INTRODUCTION

D ISTRIBUTED adaptive estimation utilizes a network
of nodes that observe a monitored phenomena with

different view points. This broadened perspective can be used
to enhance estimation performance or eliminate obstructions
in the environment, which may not be achieved using a single
node [1]. The distributed algorithms usually target to reach the
best estimate that could be produced when the individual nodes
have access to all observations across the whole network.
However, there is naturally a trade-off between the amount
of cooperation and required communication among the nodes
[1], [2].

The diffusion based distributed algorithms define a strategy
in which the nodes from a predefined neighborhood could
share information with each other [1], [2]. Such approaches
are stable against time-varying statistical profiles [1], however,
require a high amount of communication resources. For exam-
ple, in a network of N nodes, where n denotes the average
number of nodes in a neighborhood, then N × n number of
parameter estimates should be communicated among nodes on
the average at each time.

In this letter, we propose diffusion based cooperation strate-
gies that have significantly less communication load (e.g., a
single bit of information exchange) and achieve comparable
performance to the full information exchange configurations
under certain settings. In this framework, after local estimates
of the desired vector is produced in each node, a single
bit of information (or a reduced dimensional data vector)
is generated using certain random projections of the local
estimates. This new information is diffused and used in
neighboring nodes instead of the original estimates; signifi-
cantly reducing the communication load in the network. We
only require synchronization of this randomized projection
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operation, which can be achieved using simple pilot signals
[3]. Note that our approach differs from quantization based
diffusion strategies such as [4] in terms of the compression of
the diffused information. In [4], a quantized parameter estimate
is exchanged among nodes to avoid infinite precision in the
transmission. In [5], the sign of the innovation sequence in
the context of decentralized estimation and in [6], the relative
difference between the states of the nodes in a consensus
network are exchanged using a single bit of information. Here,
we substantially compress the exchanged information, even to
a single bit, and perform local adaptive operations at each
node to recover the full information vector. In this sense, our
method is more akin to compressive sensing rather than to a
quantization framework.

Our main contributions include: 1) We propose algorithms
to significantly reduce the amount of communication between
nodes for diffusion based distributed strategies; 2) We analyze
the stability of the algorithms in the mean under certain
statistical conditions; 3) We illustrate the comparable conver-
gence performance of these algorithms in different numerical
examples. We emphasize that although we only provide the
mean stability analysis due to space limitations, the mean-
square convergence and tracking analysis are carried out in a
similar fashion (following [1]) in a separate paper submission.

The letter is organized as follows. In Section II, we intro-
duce the framework and the studied problem. The new ap-
proaches are derived in Section III. In Section IV, we analyze
the mean stability of our approaches. Numerical examples and
concluding remarks are provided in Section V.

II. PROBLEM DESCRIPTION

Consider the widely studied spatially distributed frame-
work [1], [2]. Here, we have N number of nodes where two
nodes are considered neighbors if they can exchange informa-
tion. For a node i, the set of indexes of its neighbors including
the index of itself is denoted by Ni. At each node, an unknown
desired vector1, wo ∈ R

m, is observed through a linear
model di(t) = wT

o ui(t) + vi(t),2 assuming the observation
noise is temporally and spatially white (or independent), i.e.,
E[vi(t)vj(l)] = σ2

i δ(i−j)δ(t−l), where δ(·) is the Kronecker
delta and σ2

i is the variance of the noise. The regression vectors

1Although we assume a time invariant desired vector, our derivations can
be readily extended to certain non-stationary models [3].

2We represent vectors (matrices) by bold lower (upper) case letters. For a
matrix A (or a vector a), AT is the transpose. ‖a‖ is the Euclidean norm. For
notational simplicity we work with real data and all random variables have
zero mean. The sign of a is denoted by sign(a) (0 is considered positive
without loss of generality). For a vector a, dim(a) denotes the length. The
expectation of a vector or a matrix is denoted with an over-line, i.e. E[a] = a.
The diag(A) returns a new matrix with only the main diagonal of A while
diag(a) puts a on the main diagonal of the new matrix.
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are also assumed to be spatially and temporally uncorrelated
with each other and with the observation noise. At each node
an adaptive estimation algorithm is working such as the LMS
algorithm [3] given as

φi(t+ 1) = (I − µiui(t)uTi (t))wi(t) + µidi(t)ui(t),

µi > 0. As the diffusion strategy, we use the adapt-then-
combine (ATC) diffusion strategy as an example since it is
shown to outperform the combine-then-adapt diffusion and
consensus strategies under certain conditions [7]. However,
our derivations also cover these distributed strategies. In the
ATC strategy, at each node i, the final estimate is constructed
as

wi(t+ 1) =
∑
k∈Ni

λi,kφk(t+ 1),

where λi,k’s are the combination weights
∑
k∈Ni

λi,k = 1 and
λi,k ≥ 0. The combination weights λi,k can also be adapted
in time, affinely constrained or unconstrained [8]. We stick to
constant-in-time weights with the simplex constraint since the
stabilization effect of such weights is demonstrated in [1].

In the diffusion based distributed networks, whole parameter
estimates are exchanged within the neighborhood. In the next
section, we introduce two different approaches in order to
reduce the amount of information exchange between nodes.

III. NEW DIFFUSION STRATEGIES

A. Reduced Dimension Diffusion

In the first approach, each node calculates a reduced di-
mensional vector through a linear transformation zk(t+ 1) =
C(t+ 1)φk(t+ 1), where dim(zk(t+ 1))� dim(φk(t+ 1)),
and transmits zk(t + 1) instead of φk(t + 1). We use a
randomized linear transformation matrix C(t + 1) where the
size of the matrix determines the compression amount. Each
neighboring node uses the same C(t + 1). After receiving
zk(t+ 1), a neighbor node i constructs an estimate ak(t+ 1)
of the original φk(t+1) using a minimum disturbance criteria
[3] as

ak(t+ 1) = arg min
a
‖a− ak(t)‖ (1)

such that C(t+ 1)a = zk(t+ 1),

where ak(t) ∈ Rm. Note that (1) yields the NLMS algorithm
[3] as

ak(t+ 1) = ak(t) + σkC(t+ 1)T
[
C(t+ 1)×

C(t+ 1)T
]−1(

zk(t+ 1)−C(t+ 1)ak(t)
)
, (2)

where a learning rate σk > 0. is also incorporated after (1).
After ak(t+1)’s are calculated, we construct the final estimate
at node i as

wi(t+ 1) = λi,iφi(t+ 1) +
∑

k∈Ni\i

λi,kak(t+ 1). (3)

Remark 1: For a time invariant projection matrix, C(t) = C,
the exchanged estimate ak(t) converges to the projection of
the original parameter estimate φk(t) onto the column space
of the matrix C (provided that adaptation is fast enough).
In order to avoid biased convergence, we choose randomized
projection matrices that span the whole parameter space.
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Fig. 1: Single bit diffusion in two dimensions, i.e., wo ∈ R2.
As an example, one can have ak(t) = a1 or ak(t) = a2.
c⊥ denotes the vector space perpendicular to c(t+ 1) in two
dimensions and the shaded area represents the update region
for ak(t) = a2

Remark 2: One can also use an ordinary LMS update to
train ak(t) to avoid the inversion operation in (2), considering
zk(t+ 1) as the desired data and C(t+ 1) as the regression
matrix. However, since the dimensions of zk(·)’s are much
smaller than the dimension of wo, e.g., in our simulations we
use scalar zk(·)’s with m = 1, one can use the NLMS update
for ak(·)’s without significant computational increase.

In the following, we further reduce the amount of transmit-
ted information by diffusing a single bit of information instead
of a scalar.

B. Single Bit Diffusion

In this approach, we exchange only the sign of the linear
transformation zk(t+ 1) = c(t+ 1)Tφk(t+ 1). According to
the transmitted sign, the neighboring node i can construct an
estimate ak(t+ 1) of φk(t+ 1) as

ak(t+ 1) = arg min
a
‖a− ak(t)‖ such that (4)

sign
(
c(t+ 1)Ta

)
= sign (zk(t+ 1)) and (5)

‖a‖ = 1. (6)

To solve (4), we observe from Fig. 1 that we can only
have two different cases for ak(t). In the first case, we have
sign

(
c(t+ 1)Tak(t)

)
= sign (zk(t+ 1)), e.g., ak(t) = a1

in the figure. In this case, no update is needed, ak(t +
1) = ak(t), since ak(t) satisfies both conditions (5), (6)
and ‖ak(t + 1) − ak(t)‖ = 0. In the second case, we have
sign

(
c(t+ 1)Tak(t)

)
6= sign (zk(t+ 1)), e.g., ak(t) = a2

in the figure. For this case, i.e., ak(t) = a2, we only need to
project ak(t) to the half hyper sphere (shown as a half circle in
two dimensions in Fig. 1), which corresponds to the constraints
(5) and (6). This projection can be readily accomplished by
first projecting ak(t) to the vector space perpendicular to
c(t + 1) and then scaling the projected vector to have unit
norm. This yields the following

ak(t+ 1) =
ak(t)− γ(t+ 1)c(t+ 1)c(t+ 1)Tak(t)

‖ak(t)− γ(t+ 1)c(t+ 1)c(t+ 1)Tak(t)‖
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update, where

γ(t+ 1)
4
=

1− sign (zk(t+ 1)) sign
(
c(t+ 1)Tak(t)

)
2 c(t+ 1)T c(t+ 1)

.

Here, (6) is needed to resolve the inherent amplitude un-
certainty in (5) since the diffused sign bit does not carry
any amplitude information. Without (6), the amplitude of
the constrained estimates diminishes to zero by updates. We
resolve the amplitude uncertainty in the final combination
by multiplying the unit norm estimate ak(t + 1) with the
magnitude of the local parameter estimate φi(t + 1). This
scaling with the norm of φi(t + 1) results in the rotated
parameter estimation in the direction of ak(t + 1). After
the construction of the exchange estimates, the final estimate
wi(t+ 1) is calculated as

wi(t+ 1) = λi,iφi(t+ 1) + ‖φi(t+ 1)‖
∑

k∈Ni\i

λi,kak(t+ 1).

Remark 3: Fig. 1 also demonstrates the update procedure for
ak(t) = a2. The update is performed if the line, c⊥, perpen-
dicular to c(t + 1) passes through the shaded update region.
Otherwise, the exchanged sign provides no new information
and is discarded.

Alternatively, we can also resolve the amplitude uncertainty
by using a sign LMS [3] based approach. In this approach,
at each node, we run an adaptive algorithm considering c(t+
1)Tφk(t+1) as the desired data and c(t+1) as the regression
vector. We then diffuse the sign of the error zk(t + 1) =

εk(t+ 1)
4
= c(t+ 1)Tφk(t+ 1)− c(t+ 1)Tak(t). Using the

sign algorithm [3], each node k can construct the exchange
estimate as

ak(t+ 1) = ak(t) + σk sign(zk(t+ 1))c(t+ 1). (7)

Assuming ak(t)’s are initialized with the same values at each
node, (7) can be repeated at all neighboring nodes of k to
produce the same ak(t). In the next section, we analyze the
global stability of the algorithms in the mean.

IV. STABILITY ANALYSIS

We can write the reduced dimension diffusion (2) and the
sign algorithm inspired diffusion (7) approaches in a compact
form as

φi(t+ 1) = wi(t) + µiui(t)ei(t), (8)
ak(t+ 1) = ak(t) + σkc(t+ 1)h (εk(t+ 1), c(t+ 1)) (9)
wi(t+ 1) = gi (φi(t+ 1),ak(t+ 1); k ∈ Ni \ i) , (10)

where µi > 0 and σk > 0 are the local learning rates, gi(·) is
a combination function such as (3) and

ei(t) = di(t)− ui(t)Twi(t),

εk(t+ 1) = c(t+ 1)T (φk(t+ 1)− ak(t))

are the estimation and projected reconstruction errors. Here,
h (εk(t+ 1), c(t+ 1)) is a generic function of εk(t +
1) and c(t + 1), e.g., for the scalar diffusion case
h (εk(t+ 1), c(t+ 1)) =

(
c(t+ 1)T c(t+ 1)

)−1
εk(t+ 1).

We define deviations from the parameter of interests as

∆φk(t+ 1) = wo − φk(t+ 1), (11)
∆ak(t+ 1) = φk(t+ 1)− ak(t+ 1). (12)

Substituting (12) into (10), we get the final estimate as

wi(t+ 1) =
∑
k∈Ni

λi,kφk(t+ 1) −
∑

k∈Ni\i

λi,k ∆ak(t+ 1). (13)

In the analysis of the mean stability, we make the following
assumptions:
1) The projection signal c(t) (or C(t)) and the regression data
uk(t) are temporally independent.
2) The a priori construction error εk(·) and the projection
signal c(·) (or C(·)) are jointly Gaussian. For sufficiently
small step size and long filter length, this assumption is
true [3].
3) The original parameter estimates φi(·) vary slowly relative
to the constructed estimates ai(·) through the appropriate step
sizes such that

∆ak(t) = φk(t)− ak(t) ∼= φk(t+ 1)− ak(t) or
∆ak(t+ 1) = φk(t+ 1)− ak(t+ 1) ∼= φk(t)− ak(t+ 1).

We then define the following global variables

∆φ(t)
4
=

∆φ1(t)
...

∆φN (t)

 , ∆a(t)
4
=

∆a1(t)
...

∆aN (t)

 ,
U(t)

4
=

u1(t) . . . 0
...

. . .
...

0 . . . uN (t)

 , v(t)
4
=

 v1(t)
...

vN (t)

 ,
where the vector dimensions are (mN × 1) and the matrix
dimensions are (mN ×N).

Using (8), (9), (11), (12), and (13), we get

∆φ(t+ 1) =
(
I −DU(t)U(t)T

)
G ∆φ(t)− (14)(

I −DU(t)U(t)T
)
G̃ ∆a(t) +DU(t)v(t),

where G
4
= Λ ⊗ Im is the transition matrix (and ⊗ is the

Kronecker product), G̃
4
= G − diag (G), Λ

4
= [λi,k] is the

combination matrix and D
4
= diag ([µ1, µ2, ..., µN ])⊗ Im.

The global update for the reconstructed parameters yields

∆a(t+ 1) = (I − SH(t)) ∆a(t), (15)

where S
4
= diag ([σ1, σ2, ..., σN ]) ⊗ Im and H(t) is an

appropriate transition matrix. As an example, for the scalar
diffusion case we have

H(t) = Im ⊗
(
c(t+ 1)c(t+ 1)T

c(t+ 1)T c(t+ 1)

)
.

For the single-bit diffusion, h(εk(t + 1), c(t + 1)) =
sign(εk(t+1)) is a nonlinear function of εk(t+1), hence it is
not straightforward to write (15). Although h(εk(t+ 1), c(t+
1)) is nonlinear, it can be linearized using a Taylor series
expansion. However, since we assume joint Gaussianity, by
the Price’s theorem [3], we can write the expectation of the
deviation ∆ak(t+ 1) as [3]

∆ak(t+ 1) = ∆ak(t) − σk

√
2

π

E
[
c(t+ 1)c(t+ 1)T

]
E [ε2k(t+ 1)]

∆ak(t).

Note that the variance E
[
ε2k(t+ 1)

]
is given by

E
[
(c(t+ 1)∆a(t))

2
]
, and we define F (t + 1)

4
=√

π
2 diag

(
[ε21(t+ 1), ..., ε2N (t+ 1)]

)
that leads

H(t) =
[
F (t+ 1)⊗ Im

]−1 [
Im ⊗

(
E
[
c(t+ 1)c(t+ 1)T

])]
.
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Fig. 2: Statistical profile of the example network.

Taking the expectation of both sides of (14) and (15) and
by the first assumption, we get[

∆φ(t+ 1)
∆a(t+ 1)

]
=

[
BG BG̃
0 I − SH(t)

] [
∆φ(t)
∆a(t)

]
, (16)

where B
4
= I −DU(t)U(t)T . (16) covers both the reduced

dimension and single bit diffusion strategies. From (16) we
also observe that our algorithms are stable in the mean if
|λ
(
I − SH

)
| < 1 (provided that the full diffusion scheme

is stable), where λ(·)’s are the eigenvalues. As example, for
the scalar case, assuming c(·) are i.i.d. zero mean with unit
variance, then |λ

(
I − SH

)
| < 1 if and only if |1− σi| < 1

for all i. Furthermore, the step sizes σi for the reconstruction
algorithms could be chosen accordingly for comparable con-
vergence performance with the full diffusion case. Following
examples illustrate these results.

V. NUMERICAL EXAMPLE AND CONCLUDING REMARKS

In this section, we compare the introduced algorithms with
the full diffusion and no-cooperation schemes for the example
network with N = 20 nodes. Here, we have stationary data
di(t) = wT

o ui(t) + vi(t) for i = 1, 2, ..., N , where ui(t) and
vi(t) are i.i.d. zero mean and their variances and wo ∈ R4

are randomly chosen (See Fig. 2).
The combination matrix Λ = [λi,k] is chosen as

λi,k =


1/max(ni, nk) if i 6= k are linked,
0 for i and k not linked,
1−

∑
k∈Ni\i λi,k for i = k,

where ni and nk denote the number of neighboring nodes for
i and k according to the Metropolis rule.

The step sizes for the adaptation algorithms (8) of diffusion
schemes are set such that they converge with the same rate:
0.1 for no-cooperation scheme (i.e. the combination matrix
Λ = IN ), 0.2 for the single-bit and reduced dimension diffu-
sion strategies, and 0.028 for the full diffusion configuration.
The step sizes σi for the reconstruction algorithms (9) are
set as 0.25, 0.72, 0.36, and 0.18 for the single-bit, one-
dimension, two-dimension, and three-dimension, respectively.
The randomized projection vectors c(t) (and matrices C(t))
are generated i.i.d. zero mean Gaussian with standard deviation
1. We point out that we set the learning rates for all algorithms
such that the convergence rate of all algorithms are the same
for a fair comparison of the final MSDs.

In Fig. 3, we compare the mean-square deviation of various
diffusion schemes in terms of their steady state MSDs for the
same convergence rate. As expected, in our simulations, the
introduced algorithms readily outperform the no-cooperation
scheme in terms of the final MSDs. We observe from these
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Fig. 3: Global mean-square deviation (MSD) of diffusion and
no-cooperation schemes.

simulations that although we significantly reduce the amount
of information exchange, the introduced algorithms perform
similar to the full information case. To illustrate this fur-
ther, in Fig. 3, we plot the performance of the reduced-
dimension algorithm where we gradually increase the number
of dimensions that we kept. We observe that as the number
of dimensions increases, the reduced-dimension algorithm
gradually achieves the performance of the full information
case. Note also that the no-cooperation scheme gives stable
error because the adaptation algorithms converge at all nodes.
If at least one of the nodes diverges, then the performance
of the no-cooperation scheme degrades severely whereas this
does not usually influence the diffusion algorithms.

In this letter we introduce novel diffusion based distributed
adaptive estimation algorithms that significantly reduce the
communication load while providing comparable performance
with the full information exchange approaches in our sim-
ulations. We achieve this by exchanging either a scalar or a
single bit of information generated from random projections of
the estimated vectors at each node. Based on these exchanged
information, each node recalculates the estimates generated by
its neighboring nodes (which are then subsequently merged).
We also provide a mean stability analysis of the introduced
approaches for stationary data. This analysis can also be
extended to mean-square and tracking analysis under certain
settings.

REFERENCES

[1] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis,” IEEE Transactions on
Signal Processing, vol. 56, no. 7, pp. 3122–3136, 2008.

[2] F. S. Cattivelli and A. H. Sayed, “Diffusion lms strategies for distributed
estimation,” IEEE Transactions on Signal Processing, vol. 58, no. 3, pp.
1035–1048, 2010.

[3] A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley and Sons,
2003.

[4] S. Xie and H. Li, “Distributed LMS estimation over networks with
quantised communications,” International Journal of Control, vol. 86,
no. 3, pp. 478–492, 2013.

[5] A. Ribeiro, G. Giannakis, and S. Roumeliotis, “Soi-kf: Distributed kalman
filtering with low-cost communications using the sign of innovations,”
Signal Processing, IEEE Transactions on, vol. 54, no. 12, pp. 4782–4795,
2006.

[6] H. Sayyadi and M. R. Doostmohammadian, “Finite-time consensus in di-
rected switching network topologies and time-delayed communications,”
Scientia Iranica, vol. 18, no. 1, pp. 75–85, February 2011.

[7] S. Y. Tu and A. H. Sayed, “On the influence of informed agents on
learning and adaptation over networks,” IEEE Transactions on Signal
Processing, vol. 61, no. 6, pp. 1339–1356, March 2013.

[8] S. S. Kozat, A. T. Erdogan, A. C. Singer, and A. H. Sayed, “Steady state
MSE performance analysis of mixture approaches to adaptive filtering,”
IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4050–4063,
August 2010.

5081


