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Abstract- To fulfill the high data rate requirement of 

current telecommunication standards, error-correction 

codes decoders are implemented on parallel architectures 

leading to memory conflict problem. Different memory 

mapping approaches are proposed in the literature to 

solve this problem. However, these approaches can only be 

executed offline due to their computational complexity and 

resultant memory mapping is stored in dedicated ROM in 

order to drive the network for a particular block length. 

Unfortunately, to support several block lengths, multiple 

ROMs are required which results in huge hardware cost. 

In this article, we propose a novel online memory mapping 

architecture that consists of online mapping generator and 

RAM to support multiple block lengths on single chip. 

Online mapping generator performs two functions: First, 

it executes polynomial time memory mapping algorithm 

online and secondly, it generates command words for 

Benes network by using a simplified routing algorithm. 

Whenever new block length needs to be decoded, online 

mapping generator outputs addressing and command 

words at runtime to update the RAM. Experimental 

results show that significant reduction in time and 

memory cost is obtained while implementing polynomial 

time memory mapping algorithm on-chip as compared to 

state of the art approaches. 
 

1. INTRODUCTION 
 

In telecommunications domain, turbo-like codes [1][2] have 

been adopted by many standards [15]-[17] to exploit their 

excellent error-correction capability. However, executing 

these iterative algorithms sequentially results in a prohibitive 

processing latency and parallelization of decoder architectures 

to achieve very high throughput at low power budget is thus 

required (e.g. [24]). Unfortunately, parallel architectures lead 

to conflicting memory accesses which can dramatically 

decrease the system’s performances. Many works which can 

be gathered into two families of solutions are proposed in 

literature to avoid or reduce collision problems: (1) run time 

approaches in which extra memory elements and control logic 

are used in order to serialize conflicting accesses (e-g [5]-[9]) 

and (2) design time approaches that find a conflict-free 

memory mapping (e-g [11]-[13],[18], [23]). In the first family, 

[5]-[7] propose to design dedicated interconnection network 

called LLR distributor to tackle conflict problem for turbo 

codes. Butterfly and Benes are the two heterogeneous 

multistage networks investigated in [8] to increase the 

scalability and to meet higher throughput requirement on 

flexible communication network. Binary de Bruijn 

interconnection network is presented in [9] to provide 

scalability and allow any permutation to be routed efficiently. 

Communication conflicts are managed due to its path diversity 

by deflecting the conflicting packets appropriately until they 

reach the target processor rather than blocking or buffering 

them. However, all these flexible networks used in run time 

approaches suffer from large silicon area due to increased 

buffer control architectures necessary to manage conflicting 

packets. Furthermore, due to the conflict management 

mechanisms, delay is introduced which degrades the 

maximum throughput and makes sometimes these approaches 

inefficient for high data rate architectures.  

The second family of approaches consists of different 

algorithms proposed to provide concurrent accesses to all 

processing elements without any conflict. For this purpose, 

pre-processing is realized off-line on a computer to determine 

the memory locations for each data element used in the 

computations. Coloring a conflict graph with a minimum number 

of colors is NP-complete problem as shown in [10]. In addition 

graph coloring is not able to find a conflict-free memory mapping 

as shown in [22] when data are accessed several times like it is the 

case in LDPC. In order to find conflict free memory mapping in 

turbo decoder, works in [11] and [12] present meta-heuristic-based 

methods. The authors proved that conflict free memory mapping 

always exists to tackle collision problem for every code. However, 

the proposed approach is based on a simulated-annealing 

algorithm, so the user cannot predict the complexity of the 

algorithm. In [13], another heuristic is proposed which finds 

conflict free memory mapping for a given interconnection network. 

The approach given in [23] also finds conflict free memory 

mapping by adding extra logic elements like registers to the 

architecture in order to respect a targeted interconnection network. 

However, all these heuristics fail to remove the computational 

complexity of the problem and requires off-line preprocessing to 

map data in different memory banks for different block lengths and 

parallelism degree (see [21]). To overcome the problem of 

computational complexity, the authors of [18] recently introduced 

a polynomial time approach which is based on Euler partitioning. 

Complexity is greatly improved but authors still use the algorithm 

off-line to find conflict free memory mappings. In all the cases, 

existing design time approaches all require that resulting memory 

mapping is implemented by storing a set command words in 

dedicated ROM in order to drive the architecture. Unfortunately, to 

support several block lengths, multiple ROMs are required which 

results in important hardware cost. 

Recently, an approach has been introduced in [21] to combine 

design and run time approaches by embedding [11] and [13] on-

chip to propose flexible decoders. Target architecture includes 

several processing elements and memory banks interconnected 

through a crossbar network. Decoder architecture executes 

mapping algorithm online whenever new block length needs to be 

decoded and stores the generated command words in two RAMs 

that replace the set of classically used ROMs to provide conflict 

free access to the memory for this block length. However, the 

computational complexity of mapping approaches existing at that 

time made the solution infeasible for the current 

telecommunication standards.  

In this article, we propose to embed the polynomial time memory 

mapping algorithm [18] on-chip in order to execute it at runtime to 

solve conflict problem. In addition, Benes network is targeted and 

a simplified routing algorithm that is executed on-chip along with 

the mapping algorithm is proposed. Indeed, crossbar network, as 

targeted in [21], provides fast memory access and automatic 

command words generation, whereas Benes network provides 

small latency but requires routing map to access memories. 

However, for medium and high level of parallelism, the important 

hardware complexity of crossbar network makes it unaffordable. 

Hence, significant reduction in time and memory cost can be 

obtained by embedding polynomial time memory mapping 

algorithm on-chip compared to state of the art approaches.  

The rest of the paper is organized as follows. Section 2 motivates 

the importance of memory mapping approaches by highlighting the 

memory conflict problem. Section 3 describes the proposed 

approach in which we define the mapping algorithm, the routing 

algorithm and the target architecture. Section 4 presents results in 

which different processors are used to measure the computational 

complexity of the memory mapping and of our embedded routing 

approach. Finally, section 5 concludes our work.  
 

2. PROBLEM FORMULATION 
 

In this section, we briefly explain memory access conflict problem 

to motivate the use of memory mapping approaches. The problem 
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can best be explained through a simple example of turbo 

codes. We introduce two matrices, one is related to the natural 

order access and the other is related to the interleaved order 

access. Each matrix has P rows, related to the processing 

elements, and T/2 columns, related to the time instances. Data 

in each row are processed by the processing element 

associated with this row. Similarly, the P data elements in 

each column need to be accessed in parallel by P processing 

elements for parallel decoding architecture. Figure 1 depicts 

two access matrices in which we have block length L=12, 

P=3, T = 8.  
 

Natural order Matrix

PE1 0 1 2 3

PE2 4 5 6 7

PE3 8 9 10 11

t1 t2 t3 t4

Interleaved order Matrix

PE1 3 7 4 2

PE2 1 0 10 9

PE3 11 6 5 8

t5 t6 t7 t8

PA
R

A
LLELISM

 
Figure 1: Data Access Matrices 

To increase memory bandwidth, B=3 memory banks are used 

so that each processing element can concurrently get data in 

parallel. Data are stored in banks in such a manner that at each 

time instant in natural order, all the processing elements 

always access different memory banks concurrently as shown 

in Figure 2.a. However, by using this memory mapping, 

multiple processing elements will access the same memory 

bank at each time instance in interleaved order as shown in 

Figure 2.b for time instance t5 where PE1 and PE2 try to 

access to memory bank Mem1.  
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Figure 2: Memory Conflict Problem 
 

This results in memory access conflict problem that increases 

the memory access latency by two in this example and reduces 

system throughput in addition to increase the final area (due to 

the hardware components introduced in the architecture to 

serialize conflicting memory accesses).  
 

3. PROPOSED APPROACH 
 

We propose to embed the polynomial time memory mapping 

algorithm we introduced in [18] in order to execute it on-chip 

at runtime. As opposed to [21] where a Crossbar was 

considered, we target in this paper a Benes network.  
 

Generation of  Interleaved order

Interleaving
law

Execution of memory mapping approach

Generation of Routing information

Conflict-free 
Memory mapping

Natural and
Interleaved Order

Command words for 

network Configuration   

Figure 3: Design Flow  

The process of generating routing information for crossbar network 

is automatic whereas Benes network needs a routing algorithm to 

generate routing information. For this purpose, we define a 

simplified routing algorithm for Benes network that can be 

executed on-chip along with the mapping algorithm. Next three 

subsections respectively present briefly the basic concepts of our 

polynomial time memory mapping algorithm, the routing algorithm 

we propose to embed on-chip and details of the target architecture.  
 

3.1. Memory Mapping Algorithm 
The design flow of our approach is shown in Figure 3. First, the 

interleaved order is generated based on the particular interleaving 

law along with required parameters like block sizes, level of 

parallelism and scheduling.  

The second step generates the conflict free memory mapping by 

executing memory mapping approach. The polynomial time 

algorithm used in this article is briefly described with the help of 

an example given in Figure 1. The algorithm is based on two steps. 

In the first step a bipartite graph is constructed based on two data 

access matrices. Whereas in the second step a polynomial time 

bipartite edge coloring algorithm is used to find conflict free 

memory mapping.  

In the first step in order to construct a bipartite graph, a tripartite 

graph G’ = (TNAT ∪ TINT ∪ L, E) is constructed based on natural 

and interleaved data access matrices (e.g. Figure 1) in which vertex 

sets TNAT and TINT represent all the time instances used in natural 

order access and interleaved order access respectively whereas 

vertex set L represents all the data elements used in the 

computation. An edge (tNAT, l) is incident to the data vertex l and to 

the natural order time vertex tNAT if l needs to be processed at tNAT 

(i.e. data l will be read and next written at time tNAT). Similarly, an 

edge (tINT, l) is incident to the data vertex l and to the interleaved 

order time vertex tINT if l needs to be processed at tINT. This 

tripartite graph Figure 4.a is converted into bipartite graph G by 

first joining two edges at each data vertex and then removing all 

the data vertices from the tripartite graph. G is regular with the 

degree of each time node, k=P. 
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Figure 4: Bipartite Edge Coloring Algorithm 
 

After constructing bipartite graph, the next step is to apply bipartite 

edge coloring algorithm to color the edges of that graph in 

polynomial time. For this purpose, we find an Euler partitioning by 

taking every other edge to obtain two (k/2)-regular subgraphs. In 

this way the problem is reduced to two (k/2)-regular graphs. 

However, to find euler partitioning, it is necessary that k is even to 

divide a regular graph into two regular subgaphs of equal degree. 

So, if K is odd then the algorithm first finds perfect matching Mp in 

G, assign one color to the edges of Mp and remove Mp from G. 

The problem is reduced to even (K−1)-regular graph. The perfect 

matching algorithm runs in O(kD) time. The complete edge 

coloring of G’ after attaching data vertices in G is shown in Figure 

4.b. In this figure, three colors of the edges, corresponds to three 

memory banks, are represented with gray bold, gray narrow and 

gray dotted lines. Further details on this algorithm can be found in 

[18]. The resultant memory mapping is given as: 

Bank A={0,2,3,5}, Bank B ={1,7,8,10}, Bank C = {4,6,9,11} 
 

Afterwards, addressing and network control logic are generated 

based on this mapping and stored in the memory. So, if we change 
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the interleaving law then we get a new mapping that is 

different from the previous one using memory mapping 

approach. For example, new interleaved order and memory 

mapping are: 

Interleaved order  =  2, 7, 10, 8, 9, 6, 1, 5, 11, 3, 4, 0. 

Bank A={0, 1, 2, 3} Bank B={4, 5, 6, 11}, Bank C={7,8 9,10} 
 

So, the real disadvantage of executing the memory mapping 

approaches offline is the requirement of multiple memory 

elements to support different block lengths within a standard 

or multiple standards. This results in huge hardware cost that 

is utilized in storing addressing and control logic to design 

flexible decoder architecture. In order to reduce hardware 

cost, either we optimize memory required to store addressing 

and control logic or run these algorithms on chip. Current, 

memory mapping approaches are unable to completely 

remove the use of multiple ROMs to store control 

information. So, the solution is to run mapping approaches on 

chip in order to calculate new mapping information as soon as 

new block length needs to be decoded and updates new 

addressing and control information in memory. In this article, 

we explore the possibility of executing the polynomial 

algorithm on FPGA using different embedded processors to 

show the advantages of embedding mapping approaches on 

chip.  
 

3.2. Routing Algorithm  
 

The third step of the design flow for our proposed approach is 

the execution of the routing algorithm to generate the routing 

information for the targeted interconnection network. We 

adopt the routing algorithm given in [20] for Benes network. 

In this algorithm (P x P) Benes network is viewed as a 

concatenation of two sub-networks SNI and SN2. The first 

(log P - 1) stages of a Benes network correspond to SN1, and 

the remaining log P stages correspond to SN2. SN1 is 

controlled by a full binary tree of set partitioning functions, 

called a Complete Residue Partition Tree (CRPT) and SN2 is 

bit controlled.  

The control algorithm sets switches one stage at a time, stage 

by stage. A Complete Residue System modulo m, CRS-(mod 

m), is a set of m integers which contains exactly one 

representative of each residue class mod m. Whereas, a 

Complete Residue Partition, CRP, is a partition of a CRS 

(mod 2k) into two CRS's(mod 2(k- 1)), k>0. A CRP can be 

performed in many different ways. As it is the same problem 

as dividing a pile of 2k objects consisting of pairs of 2(k- 1) 

distinct objects into two piles of 2(k- 1) distinct objects, there 

are 2^(2(k-1)-1) different ways to perform a CRP. Further 

details on this algorithm can be found in [20]. 
 

3.3. Target Hardware Architecture  
 

The hardware architecture we target to allow for embedding 

the polynomial time memory mapping algorithms on chip is 

given in Figure 5. Control unit includes a dedicated processing 

element (General Purpose Processor GPP, Application 

Specific Instruction set Processor ASIP or Application 

Specific Integrated Circuit ASIC) to execute the mapping 

algorithm. As already discussed in the introduction, network 

and addressing ROMs are replaced by only two RAMs i.e. a 

Network RAM and an Addressing RAM. Online mapping 

generator executes mapping and routing algorithms. 

Afterwards, it updates these RAMs with command and 

addressing words for each time block length changes. A fully 

connected non-blocking network can be used to support 

multiple block lengths as proposed in [21]. Crossbar is a non-

blocking network in which connection of a processing element 

to a memory bank does not block the connection of any other 

processor to any other memory bank. It is feasible for online 

approaches to use crossbar network due to its high speed as they 

can be configured automatically. But, their use is normally limited 

to low level of parallelism, due to high complexity and cost. 

Hardware constraints such as the number of available pins and the 

available wiring area limits the number of physical connections of 

a switch. These issues prevent the use of crossbar networks for 

large network sizes [19]. Size of addressing_RAM = B* T * 

log2(T/2), where size of each word is B* log2(T/2)  bits. For a 

Crossbar network, the size of network_RAM= T* (P *log2 P), 

while for a Benes network, the size of network_RAM = 

T*(P/2*((2*log2 P)-1)). For Benes network, the size of bus from 

network RAM to network is P/2*((2*log2P)-1) bits and the size of 

each bus from addressing RAM to banks is B* log2(T/2) bits. 
 

RAM
0

RAM
1

RAM
2

PE
P-1

RAM
B-1

PE
2

PE
1

PE
0

Addressing Logic RAMNetwork RAM

Online Mapping Generator

Control UnitControl UnitControl UnitControl Unit  
Figure 5 : Parallel decoder architecture to embed memory mapping 

algorithms on chip 
 

As a consequence, different alternative topologies have been 

proposed in which data have to cross several switches before 

reaching the destination. Therefore, a multistage interconnection 

network such as Benes network suitable for very large systems is 

targeted in this article. Benes network is also a non-blocking 

network with complexity much lesser than Crossbar networks. 

However, unlike crossbar network, the routing information in 

Benes network is not automatically generated. Therefore, we 

propose to embed a routing algorithm presented in section 3.B 

along with the mapping algorithm to generate command words for 

Benes network. The complexity of the routing algorithm is 

T*P*(log P) for a complete block length which increases with the 

size of the block length for same P. However, for a given block 

length, the complexity remains almost the same since the number 

of accesses (T) decrease as the parallelism level (P) increases. 
 

4. RESULTS 
 

In order to show the advantage of the proposed approach, different 

experiments have been performed using different embedded 

processors to measure the runtime performances. The experiments 

consider three parameters: block size, parallelism and processor 

type. In this section, the amount of memory required to store 

command words both in case of on chip and off chip execution of 

memory mapping approaches is also compared. For experimental 

purpose, one hard processor PowerPC embedded in Xilinx FPGA 

and one soft processor NIOS-II used in Altera FPGAs are 

considered to execute our approach along with [11] and [13]. The 

execution times for [11] [13] and our approach are measured for 

different processors. Moreover, HSPA interleaver used in 3GPP-

WCDMA [16] is implemented on parallel architecture. To design 

parallel conflict free architecture for this interleaver, memory 

mapping approaches are required to generate commands and 

addressing words to support all the block sizes with different 

parallelisms.  

For the experiments, the first processor we considered is PowerPC 

which is a hard processor embedded in Xilinx Virtex-5 ML507 

board. Processor clock frequency of 400MHz and System clock 
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frequency of 100MHz was used to perform experiments. The 

second processor we considered in our experiments is NIOS 

II. NIOS II is a soft processor used in Altera FPGAs. NIOS II 

has been implemented on Cyclone-III NIOS II Embedded 

Evolution Kit with Processor clock frequency of 195MHz and 

System clock frequency of 50MHz. Normalized time values 

are used to measure the impact of architecture of embedded 

processors on execution time. PowerPC execution time is used 

as a reference for normalized time and execution times of 

NIOS II is normalized with respect to the PowerPC clock 

frequencies.  

The normalized times to execute our approach and [11][13] on 

embedded processors for different L with P = 4,8,16 and 32 

are studied. Moreover, Crossbar network is used for [11] [13] 

whereas Benes network is considered to implement our 

approach.  The normalized times to execute [11][13] and our 

approach for different L with P = 32 are shown in Figure 6 for 

NIOS II and PowerPC. From processor perspective, PowerPC 

executes the mapping algorithm in the least time as compared 

to NIOS II. From this figure, it is evident that significant 

reduction in execution time for our proposed approach is 

achieved as compared to [11] and [13] for all block lengths.  

For L = 5120 with P = 32, using PowerPC the execution time 

in case of [11] and [13] is about 2 hours where as by using our 

proposed approach the execution time is reduced significantly 

to only 127ms. Furthermore, the results for our approach also 

include the delay introduced by routing information 

generation process whereas the routing information is 

automatically generated as crossbar is considered for [11] and 

[13]. An additional delay of 0.2ms is required in order to 

generate routing information for complete block length of size 

L=256 with P=32, which increases to 4ms for L=5120 with 

same P. However, for the same block length the delay in 

command word generation remains almost the same for 

different level of parallelism as explained in previous section. 
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PowerPc_[11] NIOS-II/e_[11] PowerPc_[13] NIOS-II/e_[13] PowerPc_Proposed NIOS-II/e_Proposed  

Figure 6 : Normalized Run time Values of [11] [13] and our 

approach for different embedded processors with PE = 32 

To measure the performance of our approach with respect to 

[11] [13] for different types of parallelism, we performed 

experiments with P=4, 8, 16 and 32 for L=5120 as shown in 

Figure 7. From these experiments, significant reduction in 

execution time for proposed approach can be seen as 

compared to [11] and [13]. Furthermore, the execution time 

for our approach has no significant change with increase in 

parallelism whereas execution time for [11] [13] increases 

almost 25 times with the increase in parallelism from P = 4 to 

P = 32.    
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Figure 7 : Normalized Run time Values of [11] [13] and our 

approach for different types of parallelism using block length 5120 

From memory perspective, our approach requires the same 

memory for different parallelism to support multiple block lengths. 

However, for offline memory mapping approaches, high memory 

cost is required to support several block lengths. For P = 32, size 

of memory required in case of off-chip approach to store command 

words is  64-Mbits to implement all the block sizes used in 3GPP-

WCDMA. Thanks to the extensive reuse of RAM only 128Kbits of 

memory is required in case of on-chip execution of mapping 

algorithms. Figure 8 shows the comparison between the memory 

required to store command words with P =4, 8, 16 and 32. Same 

memory is reused to store command words as soon as the 

parallelism is changed in order to support this parallelism in case 

of proposed approach whereas off-chip approaches require 

additional memory to store new set of command words with each 

type of parallelism.  

The significant reduction in execution time and area obtained using 

our approach encourages embedding memory mapping and routing 

algorithm in future telecommunication devices.  
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Figure 8 : Area Comparison (Log Scale) using on-chip and off-chip 

approaches for different types of parallelism  

5. CONCLUSION 
 

In this article, we proposed to embed polynomial time memory 

mapping approach and routing algorithm on-chip to solve memory 

conflict problem in parallel hardware decoders based on Benes 

network. Different experiments have been performed by using 

existing memory mapping approaches executed on several 

embedded processors. Results shown that the proposed approach 

allows to greatly improve timing performances and to reduce 

memory footprint. Future perspective of this work is to further 

improve the execution time by using ASIP or hardware 

accelerators to target real time flexible decoder architectures.  
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