
EMBEDDING POLYNOMIAL TIME MEMORY MAPPING AND ROUTING ALGORITHMS

 ON-CHIP TO DESIGN CONFIGURABLE DECODER ARCHITECTURES

Saeed-ur-REHMAN 1, Awais SANI 1,2, Cyrille CHAVET 1, Philippe COUSSY 1

1 Lab-STICC, Université de Bretagne-Sud, Lorient, 2 SATT Ouest-Valorisation, Rennes

Abstract- To fulfill the high data rate requirement of

current telecommunication standards, error-correction

codes decoders are implemented on parallel architectures

leading to memory conflict problem. Different memory

mapping approaches are proposed in the literature to

solve this problem. However, these approaches can only be

executed offline due to their computational complexity and

resultant memory mapping is stored in dedicated ROM in

order to drive the network for a particular block length.

Unfortunately, to support several block lengths, multiple

ROMs are required which results in huge hardware cost.

In this article, we propose a novel online memory mapping

architecture that consists of online mapping generator and

RAM to support multiple block lengths on single chip.

Online mapping generator performs two functions: First,

it executes polynomial time memory mapping algorithm

online and secondly, it generates command words for

Benes network by using a simplified routing algorithm.

Whenever new block length needs to be decoded, online

mapping generator outputs addressing and command

words at runtime to update the RAM. Experimental

results show that significant reduction in time and

memory cost is obtained while implementing polynomial

time memory mapping algorithm on-chip as compared to

state of the art approaches.

1. INTRODUCTION

In telecommunications domain, turbo-like codes [1][2] have

been adopted by many standards [15]-[17] to exploit their

excellent error-correction capability. However, executing

these iterative algorithms sequentially results in a prohibitive

processing latency and parallelization of decoder architectures

to achieve very high throughput at low power budget is thus

required (e.g. [24]). Unfortunately, parallel architectures lead

to conflicting memory accesses which can dramatically

decrease the system’s performances. Many works which can

be gathered into two families of solutions are proposed in

literature to avoid or reduce collision problems: (1) run time

approaches in which extra memory elements and control logic

are used in order to serialize conflicting accesses (e-g [5]-[9])

and (2) design time approaches that find a conflict-free

memory mapping (e-g [11]-[13],[18], [23]). In the first family,

[5]-[7] propose to design dedicated interconnection network

called LLR distributor to tackle conflict problem for turbo

codes. Butterfly and Benes are the two heterogeneous

multistage networks investigated in [8] to increase the

scalability and to meet higher throughput requirement on

flexible communication network. Binary de Bruijn

interconnection network is presented in [9] to provide

scalability and allow any permutation to be routed efficiently.

Communication conflicts are managed due to its path diversity

by deflecting the conflicting packets appropriately until they

reach the target processor rather than blocking or buffering

them. However, all these flexible networks used in run time

approaches suffer from large silicon area due to increased

buffer control architectures necessary to manage conflicting

packets. Furthermore, due to the conflict management

mechanisms, delay is introduced which degrades the

maximum throughput and makes sometimes these approaches

inefficient for high data rate architectures.

The second family of approaches consists of different

algorithms proposed to provide concurrent accesses to all

processing elements without any conflict. For this purpose,

pre-processing is realized off-line on a computer to determine

the memory locations for each data element used in the

computations. Coloring a conflict graph with a minimum number

of colors is NP-complete problem as shown in [10]. In addition

graph coloring is not able to find a conflict-free memory mapping

as shown in [22] when data are accessed several times like it is the

case in LDPC. In order to find conflict free memory mapping in

turbo decoder, works in [11] and [12] present meta-heuristic-based

methods. The authors proved that conflict free memory mapping

always exists to tackle collision problem for every code. However,

the proposed approach is based on a simulated-annealing

algorithm, so the user cannot predict the complexity of the

algorithm. In [13], another heuristic is proposed which finds

conflict free memory mapping for a given interconnection network.

The approach given in [23] also finds conflict free memory

mapping by adding extra logic elements like registers to the

architecture in order to respect a targeted interconnection network.

However, all these heuristics fail to remove the computational

complexity of the problem and requires off-line preprocessing to

map data in different memory banks for different block lengths and

parallelism degree (see [21]). To overcome the problem of

computational complexity, the authors of [18] recently introduced

a polynomial time approach which is based on Euler partitioning.

Complexity is greatly improved but authors still use the algorithm

off-line to find conflict free memory mappings. In all the cases,

existing design time approaches all require that resulting memory

mapping is implemented by storing a set command words in

dedicated ROM in order to drive the architecture. Unfortunately, to

support several block lengths, multiple ROMs are required which

results in important hardware cost.

Recently, an approach has been introduced in [21] to combine

design and run time approaches by embedding [11] and [13] on-

chip to propose flexible decoders. Target architecture includes

several processing elements and memory banks interconnected

through a crossbar network. Decoder architecture executes

mapping algorithm online whenever new block length needs to be

decoded and stores the generated command words in two RAMs

that replace the set of classically used ROMs to provide conflict

free access to the memory for this block length. However, the

computational complexity of mapping approaches existing at that

time made the solution infeasible for the current

telecommunication standards.

In this article, we propose to embed the polynomial time memory

mapping algorithm [18] on-chip in order to execute it at runtime to

solve conflict problem. In addition, Benes network is targeted and

a simplified routing algorithm that is executed on-chip along with

the mapping algorithm is proposed. Indeed, crossbar network, as

targeted in [21], provides fast memory access and automatic

command words generation, whereas Benes network provides

small latency but requires routing map to access memories.

However, for medium and high level of parallelism, the important

hardware complexity of crossbar network makes it unaffordable.

Hence, significant reduction in time and memory cost can be

obtained by embedding polynomial time memory mapping

algorithm on-chip compared to state of the art approaches.

The rest of the paper is organized as follows. Section 2 motivates

the importance of memory mapping approaches by highlighting the

memory conflict problem. Section 3 describes the proposed

approach in which we define the mapping algorithm, the routing

algorithm and the target architecture. Section 4 presents results in

which different processors are used to measure the computational

complexity of the memory mapping and of our embedded routing

approach. Finally, section 5 concludes our work.

2. PROBLEM FORMULATION

In this section, we briefly explain memory access conflict problem

to motivate the use of memory mapping approaches. The problem

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5069

can best be explained through a simple example of turbo

codes. We introduce two matrices, one is related to the natural

order access and the other is related to the interleaved order

access. Each matrix has P rows, related to the processing

elements, and T/2 columns, related to the time instances. Data

in each row are processed by the processing element

associated with this row. Similarly, the P data elements in

each column need to be accessed in parallel by P processing

elements for parallel decoding architecture. Figure 1 depicts

two access matrices in which we have block length L=12,

P=3, T = 8.

Natural order Matrix

PE1 0 1 2 3

PE2 4 5 6 7

PE3 8 9 10 11

t1 t2 t3 t4

Interleaved order Matrix

PE1 3 7 4 2

PE2 1 0 10 9

PE3 11 6 5 8

t5 t6 t7 t8

PA
R

A
LLELISM

Figure 1: Data Access Matrices

To increase memory bandwidth, B=3 memory banks are used

so that each processing element can concurrently get data in

parallel. Data are stored in banks in such a manner that at each

time instant in natural order, all the processing elements

always access different memory banks concurrently as shown

in Figure 2.a. However, by using this memory mapping,

multiple processing elements will access the same memory

bank at each time instance in interleaved order as shown in

Figure 2.b for time instance t5 where PE1 and PE2 try to

access to memory bank Mem1.

PE 2

PE 1

4, 5,

6, 7

0, 1,

2, 3

PE 3
8, 9,

10, 11

Mem 2

Mem 1

Mem 3

PE 2

PE 1

4, 5,

6, 7

0, 1,

2, 3

PE 3
8, 9,

10, 11

Mem 2

Mem 1

Mem 3

Conflict
Problem

a. Conflict free natural order Access b. Interleaved order with conflicts

Figure 2: Memory Conflict Problem

This results in memory access conflict problem that increases

the memory access latency by two in this example and reduces

system throughput in addition to increase the final area (due to

the hardware components introduced in the architecture to

serialize conflicting memory accesses).

3. PROPOSED APPROACH

We propose to embed the polynomial time memory mapping

algorithm we introduced in [18] in order to execute it on-chip

at runtime. As opposed to [21] where a Crossbar was

considered, we target in this paper a Benes network.

Generation of Interleaved order

Interleaving
law

Execution of memory mapping approach

Generation of Routing information

Conflict-free
Memory mapping

Natural and
Interleaved Order

Command words for

network Configuration

Figure 3: Design Flow

The process of generating routing information for crossbar network

is automatic whereas Benes network needs a routing algorithm to

generate routing information. For this purpose, we define a

simplified routing algorithm for Benes network that can be

executed on-chip along with the mapping algorithm. Next three

subsections respectively present briefly the basic concepts of our

polynomial time memory mapping algorithm, the routing algorithm

we propose to embed on-chip and details of the target architecture.

3.1. Memory Mapping Algorithm
The design flow of our approach is shown in Figure 3. First, the

interleaved order is generated based on the particular interleaving

law along with required parameters like block sizes, level of

parallelism and scheduling.

The second step generates the conflict free memory mapping by

executing memory mapping approach. The polynomial time

algorithm used in this article is briefly described with the help of

an example given in Figure 1. The algorithm is based on two steps.

In the first step a bipartite graph is constructed based on two data

access matrices. Whereas in the second step a polynomial time

bipartite edge coloring algorithm is used to find conflict free

memory mapping.

In the first step in order to construct a bipartite graph, a tripartite

graph G’ = (TNAT ∪ TINT ∪ L, E) is constructed based on natural

and interleaved data access matrices (e.g. Figure 1) in which vertex

sets TNAT and TINT represent all the time instances used in natural

order access and interleaved order access respectively whereas

vertex set L represents all the data elements used in the

computation. An edge (tNAT, l) is incident to the data vertex l and to

the natural order time vertex tNAT if l needs to be processed at tNAT

(i.e. data l will be read and next written at time tNAT). Similarly, an

edge (tINT, l) is incident to the data vertex l and to the interleaved

order time vertex tINT if l needs to be processed at tINT. This

tripartite graph Figure 4.a is converted into bipartite graph G by

first joining two edges at each data vertex and then removing all

the data vertices from the tripartite graph. G is regular with the

degree of each time node, k=P.

0

1

2

3

4

5

6

7

8

9

10

11
Natural Order Time Vertices Interleaved Order Time Vertices

Data Vertices

t5

t6

t7

t8

t1

t2

t3

t4

t5

t6

t7

t8

t1

t2

t3

t4

Natural Order Time Vertices Interleaved Order Time Vertices

0

1

2

3

4

5

6

7

8

9

10

11

Data Vertices
a. Tripartite graph b. Complete Edge Coloring

Figure 4: Bipartite Edge Coloring Algorithm

After constructing bipartite graph, the next step is to apply bipartite

edge coloring algorithm to color the edges of that graph in

polynomial time. For this purpose, we find an Euler partitioning by

taking every other edge to obtain two (k/2)-regular subgraphs. In

this way the problem is reduced to two (k/2)-regular graphs.

However, to find euler partitioning, it is necessary that k is even to

divide a regular graph into two regular subgaphs of equal degree.

So, if K is odd then the algorithm first finds perfect matching Mp in

G, assign one color to the edges of Mp and remove Mp from G.

The problem is reduced to even (K−1)-regular graph. The perfect

matching algorithm runs in O(kD) time. The complete edge

coloring of G’ after attaching data vertices in G is shown in Figure

4.b. In this figure, three colors of the edges, corresponds to three

memory banks, are represented with gray bold, gray narrow and

gray dotted lines. Further details on this algorithm can be found in

[18]. The resultant memory mapping is given as:

Bank A={0,2,3,5}, Bank B ={1,7,8,10}, Bank C = {4,6,9,11}

Afterwards, addressing and network control logic are generated

based on this mapping and stored in the memory. So, if we change

5070

the interleaving law then we get a new mapping that is

different from the previous one using memory mapping

approach. For example, new interleaved order and memory

mapping are:

Interleaved order = 2, 7, 10, 8, 9, 6, 1, 5, 11, 3, 4, 0.

Bank A={0, 1, 2, 3} Bank B={4, 5, 6, 11}, Bank C={7,8 9,10}

So, the real disadvantage of executing the memory mapping

approaches offline is the requirement of multiple memory

elements to support different block lengths within a standard

or multiple standards. This results in huge hardware cost that

is utilized in storing addressing and control logic to design

flexible decoder architecture. In order to reduce hardware

cost, either we optimize memory required to store addressing

and control logic or run these algorithms on chip. Current,

memory mapping approaches are unable to completely

remove the use of multiple ROMs to store control

information. So, the solution is to run mapping approaches on

chip in order to calculate new mapping information as soon as

new block length needs to be decoded and updates new

addressing and control information in memory. In this article,

we explore the possibility of executing the polynomial

algorithm on FPGA using different embedded processors to

show the advantages of embedding mapping approaches on

chip.

3.2. Routing Algorithm

The third step of the design flow for our proposed approach is

the execution of the routing algorithm to generate the routing

information for the targeted interconnection network. We

adopt the routing algorithm given in [20] for Benes network.

In this algorithm (P x P) Benes network is viewed as a

concatenation of two sub-networks SNI and SN2. The first

(log P - 1) stages of a Benes network correspond to SN1, and

the remaining log P stages correspond to SN2. SN1 is

controlled by a full binary tree of set partitioning functions,

called a Complete Residue Partition Tree (CRPT) and SN2 is

bit controlled.

The control algorithm sets switches one stage at a time, stage

by stage. A Complete Residue System modulo m, CRS-(mod

m), is a set of m integers which contains exactly one

representative of each residue class mod m. Whereas, a

Complete Residue Partition, CRP, is a partition of a CRS

(mod 2k) into two CRS's(mod 2(k- 1)), k>0. A CRP can be

performed in many different ways. As it is the same problem

as dividing a pile of 2k objects consisting of pairs of 2(k- 1)

distinct objects into two piles of 2(k- 1) distinct objects, there

are 2^(2(k-1)-1) different ways to perform a CRP. Further

details on this algorithm can be found in [20].

3.3. Target Hardware Architecture

The hardware architecture we target to allow for embedding

the polynomial time memory mapping algorithms on chip is

given in Figure 5. Control unit includes a dedicated processing

element (General Purpose Processor GPP, Application

Specific Instruction set Processor ASIP or Application

Specific Integrated Circuit ASIC) to execute the mapping

algorithm. As already discussed in the introduction, network

and addressing ROMs are replaced by only two RAMs i.e. a

Network RAM and an Addressing RAM. Online mapping

generator executes mapping and routing algorithms.

Afterwards, it updates these RAMs with command and

addressing words for each time block length changes. A fully

connected non-blocking network can be used to support

multiple block lengths as proposed in [21]. Crossbar is a non-

blocking network in which connection of a processing element

to a memory bank does not block the connection of any other

processor to any other memory bank. It is feasible for online

approaches to use crossbar network due to its high speed as they

can be configured automatically. But, their use is normally limited

to low level of parallelism, due to high complexity and cost.

Hardware constraints such as the number of available pins and the

available wiring area limits the number of physical connections of

a switch. These issues prevent the use of crossbar networks for

large network sizes [19]. Size of addressing_RAM = B* T *

log2(T/2), where size of each word is B* log2(T/2) bits. For a

Crossbar network, the size of network_RAM= T* (P *log2 P),

while for a Benes network, the size of network_RAM =

T*(P/2*((2*log2 P)-1)). For Benes network, the size of bus from

network RAM to network is P/2*((2*log2P)-1) bits and the size of

each bus from addressing RAM to banks is B* log2(T/2) bits.

RAM
0

RAM
1

RAM
2

PE
P-1

RAM
B-1

PE
2

PE
1

PE
0

Addressing Logic RAMNetwork RAM

Online Mapping Generator

Control UnitControl UnitControl UnitControl Unit
Figure 5 : Parallel decoder architecture to embed memory mapping

algorithms on chip

As a consequence, different alternative topologies have been

proposed in which data have to cross several switches before

reaching the destination. Therefore, a multistage interconnection

network such as Benes network suitable for very large systems is

targeted in this article. Benes network is also a non-blocking

network with complexity much lesser than Crossbar networks.

However, unlike crossbar network, the routing information in

Benes network is not automatically generated. Therefore, we

propose to embed a routing algorithm presented in section 3.B

along with the mapping algorithm to generate command words for

Benes network. The complexity of the routing algorithm is

T*P*(log P) for a complete block length which increases with the

size of the block length for same P. However, for a given block

length, the complexity remains almost the same since the number

of accesses (T) decrease as the parallelism level (P) increases.

4. RESULTS

In order to show the advantage of the proposed approach, different

experiments have been performed using different embedded

processors to measure the runtime performances. The experiments

consider three parameters: block size, parallelism and processor

type. In this section, the amount of memory required to store

command words both in case of on chip and off chip execution of

memory mapping approaches is also compared. For experimental

purpose, one hard processor PowerPC embedded in Xilinx FPGA

and one soft processor NIOS-II used in Altera FPGAs are

considered to execute our approach along with [11] and [13]. The

execution times for [11] [13] and our approach are measured for

different processors. Moreover, HSPA interleaver used in 3GPP-

WCDMA [16] is implemented on parallel architecture. To design

parallel conflict free architecture for this interleaver, memory

mapping approaches are required to generate commands and

addressing words to support all the block sizes with different

parallelisms.

For the experiments, the first processor we considered is PowerPC

which is a hard processor embedded in Xilinx Virtex-5 ML507

board. Processor clock frequency of 400MHz and System clock

5071

frequency of 100MHz was used to perform experiments. The

second processor we considered in our experiments is NIOS

II. NIOS II is a soft processor used in Altera FPGAs. NIOS II

has been implemented on Cyclone-III NIOS II Embedded

Evolution Kit with Processor clock frequency of 195MHz and

System clock frequency of 50MHz. Normalized time values

are used to measure the impact of architecture of embedded

processors on execution time. PowerPC execution time is used

as a reference for normalized time and execution times of

NIOS II is normalized with respect to the PowerPC clock

frequencies.

The normalized times to execute our approach and [11][13] on

embedded processors for different L with P = 4,8,16 and 32

are studied. Moreover, Crossbar network is used for [11] [13]

whereas Benes network is considered to implement our

approach. The normalized times to execute [11][13] and our

approach for different L with P = 32 are shown in Figure 6 for

NIOS II and PowerPC. From processor perspective, PowerPC

executes the mapping algorithm in the least time as compared

to NIOS II. From this figure, it is evident that significant

reduction in execution time for our proposed approach is

achieved as compared to [11] and [13] for all block lengths.

For L = 5120 with P = 32, using PowerPC the execution time

in case of [11] and [13] is about 2 hours where as by using our

proposed approach the execution time is reduced significantly

to only 127ms. Furthermore, the results for our approach also

include the delay introduced by routing information

generation process whereas the routing information is

automatically generated as crossbar is considered for [11] and

[13]. An additional delay of 0.2ms is required in order to

generate routing information for complete block length of size

L=256 with P=32, which increases to 4ms for L=5120 with

same P. However, for the same block length the delay in

command word generation remains almost the same for

different level of parallelism as explained in previous section.

1

10

100

1000

10000

100000

1000000

10000000

256 512 1024 1536 2048 3072 4096 5120
Block Lengths

PowerPc_[11] NIOS-II/e_[11] PowerPc_[13] NIOS-II/e_[13] PowerPc_Proposed NIOS-II/e_Proposed

Figure 6 : Normalized Run time Values of [11] [13] and our

approach for different embedded processors with PE = 32

To measure the performance of our approach with respect to

[11] [13] for different types of parallelism, we performed

experiments with P=4, 8, 16 and 32 for L=5120 as shown in

Figure 7. From these experiments, significant reduction in

execution time for proposed approach can be seen as

compared to [11] and [13]. Furthermore, the execution time

for our approach has no significant change with increase in

parallelism whereas execution time for [11] [13] increases

almost 25 times with the increase in parallelism from P = 4 to

P = 32.

1

10

100

1000

10000

100000

1000000

10000000

4 8 16 32
Parallelism

PowerPc_[11] NIOS-II/e_[11] PowerPc_[13] NIOS-II/e_[13] PowerPc_proposed NIOS-II/e_proposed

Figure 7 : Normalized Run time Values of [11] [13] and our

approach for different types of parallelism using block length 5120

From memory perspective, our approach requires the same

memory for different parallelism to support multiple block lengths.

However, for offline memory mapping approaches, high memory

cost is required to support several block lengths. For P = 32, size

of memory required in case of off-chip approach to store command

words is 64-Mbits to implement all the block sizes used in 3GPP-

WCDMA. Thanks to the extensive reuse of RAM only 128Kbits of

memory is required in case of on-chip execution of mapping

algorithms. Figure 8 shows the comparison between the memory

required to store command words with P =4, 8, 16 and 32. Same

memory is reused to store command words as soon as the

parallelism is changed in order to support this parallelism in case

of proposed approach whereas off-chip approaches require

additional memory to store new set of command words with each

type of parallelism.

The significant reduction in execution time and area obtained using

our approach encourages embedding memory mapping and routing

algorithm in future telecommunication devices.

15

25
35

45

110 100 90 80

128 128 128 128

8192
13312

18432
25436

53233 47732 42231 37970
61425 61044 60663 63406

1

10

100

1000

10000

100000

4 8 16 32
Parallelism

Network
Conrtoller

Address
Controller

Total

On-Chip Off-Chip On-Chip Off-Chip On-Chip Off-Chip On-Chip Off-Chip

Figure 8 : Area Comparison (Log Scale) using on-chip and off-chip

approaches for different types of parallelism

5. CONCLUSION

In this article, we proposed to embed polynomial time memory

mapping approach and routing algorithm on-chip to solve memory

conflict problem in parallel hardware decoders based on Benes

network. Different experiments have been performed by using

existing memory mapping approaches executed on several

embedded processors. Results shown that the proposed approach

allows to greatly improve timing performances and to reduce

memory footprint. Future perspective of this work is to further

improve the execution time by using ASIP or hardware

accelerators to target real time flexible decoder architectures.

5072

REFERENCES

[1] C.Berrou, A.Glavieux, and P.Thitimajshima, “Near-Shannon

limit error-correcting coding and decoding: Turbo codes,” in Proc.

IEEE Int. Conf. Commun., vol.2, pp.1064–1070, 1993.

[2] R. G. Gallager, “Low-Density Parity-Check Codes”,

Cambridge, MA: MIT Press, 1963.

[3] C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, M. Jezequel,

“Designing good permutations for turbo codes: towards a single

model,” in Proc. of ICC 2004, vol. 1, June 2004, pp. 341-345

[4] O. Y. Takeshita, “On maximum contention-free interleavers and

permutation polynomials over integer rings,” IEEE Trans. Inf. Theory,

vol. 52, no. 3, pp. 1249–1253, Mar. 2006.

[5] M. Thul, N. Wehn, and L. Rao, “Enabling high-speed turbo

decoding through concurrent interleaving,” in Proc. IEEE

International Symposium on Circuits and Systems (ISCAS), vol. 1,

2002, pp. 897–900.

[6] M. I. Thul, F. Gilbert. and N. Wehn. “Optimized Concurrent

Interleaving for High-speed Turbo-Decoding”. In Proc. ICECS 2002,

Dubrovnik, Croatia, Sept. 2002.

[7] M. Thul, F. Gilbert, and N. Wehn, “Concurrent interleaving

architectures for high-throughput channel coding,” in Proc. IEEE

International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), 2003, pp. 613–616 vol.2.

[8] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel, “Butterfly

and Benes-based on-chip communication networks for multiprocessor

turbo decoding,” in Proc. of the conference on Design, Automation

and Test in Europe, pp. 654-659, April 2007.

[9] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary de Bruijn

interconnection network for a flexible LDPC/turbo decoder,” in Proc.

IEEE Int. Symp. Circuits Syst., 2008, pp. 97–100.

[10] P. Keyngnaert, B. Demoen, B. De Sutter, B. De Sus,and K. De

Bosschere. “Conflict Graph Based Allocation of Static Objects to

Memory Banks” Informal proceedings of the First workshop on

Semantic, Program Analysis, and Computing Environments, pages

131–142, September 2001.

[11] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping

interleaving laws to parallel turbo and LDPC decoder architectures”,

IEEE Trans.Inf.Theory, vol. 50, no.9, pp.2002-2009, Sep. 2004.

[12] Jing-ling, “Parallel Interleavers Through Optimized Memory

Address Remapping” IEEE Trans. VLSI Systems vol. 18, no.6,

pp.978-987, June. 2010.

[13] C. Chavet, P. Coussy, P. Urard and E. Martin, “Static Address

Generation Easing: a Design Methodology for Parallel Interleaver

Architecture”. In proceeding ICASSP 2010.

[14] J.L. Gross, J.Yellen, “Handbook of Graph Theory”, 353, CRC

Press. 2003.

[15] “Technical Specification Group Radio Access Network;

Evolved Universal Terrestrial Radio Access; Multiplexing and

Channel Coding (Release 8)”, 3GPP Std. TS 36.212, Dec. 2008.

[16] 3GPP, “Technical specification group radio access network;

multiplexing and channel coding (FDD)” (25.212 V5.9.0).June 2004.

[17] IEEE P802.16e, Part 16. “Air Interface for Fixed and Mobile

Broadband Wireless Access Systems,” Amendment 2: Physical and

Medium Access Control Layers for Combined Fixed and Mobile

Operation in Licensed Bands, and Corrigendum 1, Feb. 2006.

[18] A.H. Sani, C. Chavet and P. Coussy, "A First Step Toward On-

Chip Memory Mapping for Parallel Turbo and LDPC Decoders: A

Polynomial Time Mapping Algorithm", IEEE Transactions on

Signal Processing, vol. 61, issue: 16, p.4127 - 4140, 2013.

[19] Jose Duato, Sudhakar Yalamanchili and Lionel Ni.

“Interconnection Networks an Engineering Approach”, Morgan

Kaufman Publishers, 2003,p.20-30

[20] K. Y. Lee, “A new Benes network control algorithm,” IEEE

Trans. Comput., vol. C-36, no. 6, pp. 768–772, June 1987

[21] S. Ur Rehman, A. Sani, P. Coussy and C. Chavet, "On-Chip

Implementation Of Memory Mapping Algorithm To Support Flexible

Decoder Architecture", In Proceedings of the 38th IEEE International

Conference on Acoustics, Speech and Signal Processing, Vancouver,

May, 2013.

[22] C. Chavet and P. Coussy, "A memory Mapping Approach for

Parallel Interleaver design with multiples read and write accesses", In

Proceedings of the IEEE International Symposium on Circuits and Systems

(ISCAS) 2010, page 3168-3171, Paris, France, june 2010

[23] A. Briki, C. Chavet and P. Coussy, "A Conflict-Free Memory

Mapping Approach To Design Parallel Hardware Interleaver Architectures

With Optimized Network And Controller", In Proceedings of IEEE

Workshop on Signal Processing Systems (SiPS), page XX-YY, Taipei :

Taiwan, Province De Chine, oct. 201

[24] G. Masera, “VLSI for turbo codes,” in Turbo Code Applications:

AJourney From a Paper to Realization. Berlin, Germany: Springer-Verlag,

2005, ch. 14.

5073

