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ABSTRACT

As the homeostatis characteristics of nerve systems show, ar-
tificial neural networks are considered to be robust to varia-
tion of circuit components and interconnection faults. How-
ever, the tolerance of neural networks depends on many fac-
tors, such as the fault model, the network size, and the training
method. In this study, we analyze the fault tolerance of fixed-
point feed-forward deep neural networks for the implementa-
tion in CMOS digital VLSI. The circuit errors caused by the
interconnection as well as the processing units are considered.
In addition to the conventional and dropout training meth-
ods, we develop a new technique that randomly disconnects
weights during the training to increase the error resiliency.
Feed-forward deep neural networks for phoneme recognition
are employed for the experiments.

Index Terms— dropout training, fault model, fault toler-
ant characteristic, neural network hardware

1. INTRODUCTION

Feed-forward deep neural networks (DNNs) that employ mul-
tiple hidden layers show high performance in various applica-
tions [1–6]. Although DNNs demand high complexity circuit,
their implementation using nano-scale semiconductor tech-
nology is quite promising. However, nano-scale systems fre-
quently suffer from not only hard circuit faults but also soft
operational errors due to insufficient timing margin or oper-
ating voltage. There are several researches to overcome the
reliability problem of nano-scale systems, such as redundant
arithmetic and stochastic computing [7, 8].

There have been many studies on fault tolerant character-
istics of artificial neural networks. The fault tolerance of neu-
ral networks was studied when the number of hidden layers
and that of units in each layer are varied in the retraining pro-
cess in [9]. The study of spiking neural circuits with improved
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redundancy was conducted in [10]. The effect of training
method on fault tolerance of an artificial neural network was
studied in [11, 12]. The previous studies were mostly based
on shallow neural networks with a small number of neurons
in the hidden layers. Since neural networks with deeper archi-
tecture shows better performance, it is necessary to examine
fault tolerant characteristics of DNNs.

In this study, we examine the fault tolerance of digi-
tal VLSI-based feed-forward deep neural networks. Digital
VLSI-based DNN circuits have very regular structures mainly
composed of memory and processing units. For this study,
we design fixed-point digital deep neural networks for speech
phoneme recognition. Two kinds of fault are assumed, one in
the memory and the other in the processing units. Both stuck
to zero and random errors are considered. The fault tolerance
of the network when the number of units in each layer varies
is studied. Also, the fault tolerant effect according to the
training technique is also measured. We develop a weight
dropout training technique to strengthen the fault-tolerance
of the network against weight errors.

This paper is organized as follows. In Section 2, the fixed-
point deep neural networks for phoneme recognition are de-
veloped. Section 3 describes the fault model employed in
this study. The experimental results are shown in Section 4,
followed by concluding remarks in Section 5.

2. FIXED-POINT DNN DESIGN

In this study, we use the DNN-based phoneme recognition
algorithm that consists of an input layer, four hidden layers,
and one output layer. The input layer contains 429 linear units
to accept real valued inputs that correspond to 11 frames of
MFCC (Mel-frequency cepstral coefficient) parameters. Four
hidden layers have the same number of logistic units, which
is 256, 512, or 1024 in this study. The output layer consists of
61 logistic units that correspond to 61 target phoneme labels.
The similar structure can be found in [4].

The networks are pre-trained with unsupervised greedy
restricted Boltzmann machine (RBM) learning. Training
parameters that critically affect the performance are care-
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Table 1. Frame level phoneme recognition error rate (%) of
1024-unit-layer network, which is trained conventionally us-
ing M-point weight quantization.

Approach Signal word-length M = 3 M = 7 M = 15
Floating point – 26.24

Fixed point (direct)

1 bit 66.58 46.53 38.34
2 bits 56.15 34.56 30.44
3 bits 54.10 33.36 28.85
8 bits 50.20 32.85 28.55

Fixed point (retrain)

1 bit 29.97 29.76 29.67
2 bits 28.35 28.46 28.02
3 bits 27.63 27.90 27.73
8 bits 27.37 27.87 27.84

fully selected by experiments. The binary-Gaussian RBM
is trained by 40 epochs with the learning rate of 0.005. For
the other RBM, we use 20 epochs of 1-step contrastive-
divergence based stochastic gradient descent with the mini-
batch size of 128, the learning rate of 0.05, and the momen-
tum of 0.9. For the fine-tuning, we use 10 epochs of the
back-propagation with the stochastic gradient descent, the
mini-batch size of 128, the fixed learning rate of 0.05, and the
momentum of 0.9.

The conventional training does not employ any regulariza-
tion technique such as dropout during the back-propagation
[18]. For this training, we use the TIMIT corpus that is com-
prised of a training set from 462 speakers and a test set from
168 speakers [13]. All SA recordings, utterances of the same
sentences from every speaker, in the corpus are removed dur-
ing training since it can give bias to the results. The input
receives 39 dimension MFCCs, which are 12th-order MFCCs
with energy and their first and second temporal derivatives.
MFCCs are extracted using the 25-ms Hamming window with
the 10-ms frame rate. We use 11 consecutive frames that are
normalized to have zero mean and unit variance [4]. The eval-
uation uses 39 phone classes which are mapped from the orig-
inal 61 phones as described in [14].

For VLSI-based implementation of a DNN, fixed-point
arithmetic [15] is much desired. However, direct quantization
of floating-point weights for obtaining fixed-point weights
does not yield good results when the precision of weights is
very low. To address this issue, we employ a fixed-point op-
timization scheme that retrains the directly quantized neural
network. [16, 17]. The input signal is quantized with fixed
8-bit word-length, where the output is not quantized. In dig-
ital VLSI based neural networks, reducing the word-length
of the weights is very important for hardware cost reduction
because the number of them usually exceeds millions. We
only use 3 levels (+1, -1, and 0) for representing the weights
and 3 bits for internal signals. Initial fixed-point weights
are obtained by directly quantizing the optimum floating-
point weights. The quantization step size is determined using
L2 minimum optimization followed by exhaustive search.

Table 2. Frame level phoneme recognition error rate (%) ac-
cording to the network size with floating-point and fixed-point
arithmetic.

Hidden layer size and training method
Error rate (%)

Floating-point Fixed-point
256-unit-layer with conv. training 28.19 32.53
512-unit-layer with conv. training 26.84 28.91
1024-unit-layer with conv. training 26.24 27.63
1024-unit-layer with unit dropout 23.71 24.93

1024-unit-layer with weight dropout 25.87 28.03

In order to further refine the fixed-point weights, the back-
propagation-based retraining algorithm is reapplied. In the
retraining procedure, we maintain both the high- and low-
precision weights and the signals to accumulate the effects
of small adaptation error. Table 1 shows that the retraining
based fixed-point optimization scheme results in good perfor-
mance even when the network employs only ternary weights
and 3-bit signals for the hidden layers. This indicates that two
bits are sufficient to represent a single weight.

Recently, a new regularization algorithm that intention-
ally drops out some of the processing units in the network
to prevent early over-fitting has been developed [18]. In this
algorithm, called dropout, some randomly chosen processing
units are forced to have zero output. This algorithm shows ex-
cellent performance with floating-point arithmetic. We found
that this training algorithm also yields better recognition per-
formance when applied to fixed-point DNN optimization.
The performance of dropout when applied to phoneme recog-
nition is shown in Table 2.

In this study, we develop a modified form of dropout train-
ing method that randomly drops out (forcing to zero) about
30% of the weights. The performance of this training tech-
nique is shown in Table 2. The developed weight dropout
training does not show better results when compared to the
unit dropout method. However, the weight-error tolerance of
the DNN with the weight dropout training is worth studying.

3. FAULT MODEL OF DNN

A fixed-point deep neural network mainly consists of two
components; one is the interconnection with weights of +1,
-1, and 0, and the other is the processing units that include
adders and other logic components. Therefore, we study the
performance of both cases: one with the fault in the intercon-
nections and the other in the processing units.

3.1. Interconnection fault model

A DNN contains many connections, and the weight of each
connection can be simplified to +1, -1, or 0 by the fixed-point
optimization. The interconnection networks can be imple-
mented in two ways; one is using dedicated wires and con-
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Fig. 1. Output value distribution of processing units.

tacts, while the other is employing CMOS switches whose
control is determined by weights stored in memory.

We consider two types of interconnection faults. One is
the uni-directional faults and the other is the random faults.
In the former case, interconnections whose weights are either
+1 or -1 can be disconnected, but disconnected ones are not
connected by faults. When the weights are stored in the mem-
ory, the memory contents of +1 or -1 can be changed to 0, but
those of 0 are not subject to change. When weights are stored
in the flash memory, where the electric charge is injected for
programming, the leakage of stored charge incurs only one
directional data error. On the other hand, the random fault
model assumes that the interconnection weights of +1, -1, or
0 can be changed to any other values by faults. This is the
case when the weights are stored in CMOS SRAM that does
not have any polarity in the direction of faults.

3.2. Processing unit fault model

Each processing unit in digital CMOS-based VLSI of a DNN
usually consists of adders, registers, and a logistic sigmoid
function unit. The number of adders employed in each pro-
cessing unit depends on the time-multiplexing factor. We con-
sider two fault models depending on the output value of a
faulty processing unit; one is always 0 and the other one is
randomly determined between 0 and 1. We profiled the out-
put value of all the processing units in the DNN for phoneme
recognition and found that the majority output value is close
to 0 as shown in Figure 1. Thus, it can be advantageous to
make the output value of a faulty processing unit zero.

4. EXPERIMENTAL RESULTS

The fault tolerance of DNNs depends on several factors. We
show the tolerance of each fault model with various sizes of
the network. Fault tolerant characteristics of DNNs trained

(a) Weight-error tolerance of DNNs having different network size.

(b) Unit-error tolerance of DNNs having different network size.

Fig. 2. Frame-level phoneme error rate of conventional DNN.

with ordinary training method and DNNs with dropout train-
ing are compared.

4.1. Weight-error tolerance

Figure 2(a) shows the frame-level phoneme error rate of two
weight-error models. The results clearly show that the stuck-
to-zero fault model for the weights yields much better perfor-
mance than the random error model. For the random-error
model, the network with an increased number of units per
layer is more severely affected by the error. This shows that
error tolerance of DNNs can be improved by forcing random
weights errors to zero. Also, we can notice that the network
degrades very modestly with the stuck-to-zero fault model
when the weight-error rate is less than 5%.

4.2. Unit-error tolerance

The unit-error in the neural networks is similar to a faulty
neuron itself. The phoneme error rate respected to the unit-
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Fig. 3. Unit-error tolerance of DNNs trained by different
methods.

error rate is shown in Figure 2(b). Here, we can find that the
effect of the fault model is not significant. Although the stuck-
to-zero model shows better recognition performance when the
error rate is very high, there is not much difference when the
error rate is less than 5%. Varying the network size also does
not show consistent results. When the unit size in each layer
is 1024, the network degrades very gracefully until the unit-
error rate of 5%.

4.3. Processing unit error tolerance of DNNs with differ-
ent training and fault models

Dropout was developed for the purpose of overcoming the
over-fitting in the training process [19]. In the training with
dropout, some outputs of the processing units are randomly
forced to zero. In order words, processing unit faults are ran-
domly injected during the back-propagation-based supervised
training. This technique was developed to overcome the over-
fitting problem and obtains better results with a limited size
of training data. Figure 3 compares the phoneme recogni-
tion rates with 1024 units per hidden layer. We can find that
DNNs trained with dropout are more tolerant than the ordi-
nary DNNs. The DNNs trained with weight dropout does not
show better results than the DNN with the (processing unit)
dropout training.

4.4. Weight error tolerance of DNNs with different train-
ing and fault models

The weight-error tolerance of DNNs with different training
methods and fault models are shown in Figure 4. The number
of units per hidden layer is 1024. It is clear that the fault
model is the most Significant factor. The DNNs with the
stuck-to-zero model are always better than those with the ran-
dom error model. We can find that the error resiliency of the
DNN trained with weight dropout is the best when the error

Fig. 4. Weight-error tolerance of DNNs trained by different
methods.

rate is very high, around 50%. Note that the (processing unit)
dropout training yields the best results when the error rate
is small. However, the DNN with the weight dropout train-
ing shows better results when the weight-error rate exceeds
40%. This shows that tolerance of DNN is also dependent on
the characteristics of faults injected during the training pro-
cess, where the fault injection is originally intended to prevent
over-fitting.

5. CONCLUDING REMARKS

We examine the fault tolerance of digital feed-forward deep
neural networks (DNNs) when altering the fault model, net-
work size, and training method. Both interconnection and
processing unit errors are considered. We also compare the
effects of training methods that include conventional, unit
dropout, and weight dropout techniques. The stuck-to-zero
fault model yields higher tolerance when compared to the
random error model. The most influential factor is the train-
ing method. The unit dropout training prominently increases
the fault tolerance of the network against unit errors, while
the proposed weight dropout training also modestly strength-
ens the fault tolerance against severe weight errors. We can
find that DNNs with appropriate training methods experience
only modest performance loss when the error rate is under
10%. This study contributes to the implementation of robust
deep neural networks employing nano-scale digital CMOS
technology.
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