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ABSTRACT 
 

As cloud computing platform provides computing power 
as utilities, it is important to develop a mechanism to 
adaptively adjust the resources needed for handling cloud 
service. In this paper, a computing resource minimization 
framework for cloud-based surveillance video analysis 
systems is proposed. Videos streams are divided into clips 
and multiple processing nodes are used to handle clips. 
While the quality-of-service (QoS) is maintained, the 
proposed framework dynamically adjusts the number of 
processing nodes based on a proposed content-aware 
workload estimation mechanism. Experimental results show 
that the proposed mechanism successfully predicts the 
variability of system workload while QoS is maintained and 
outperforms other mechanisms in terms of average virtual 
machine (VM) quantity and job failure ratio. 
 

Index Terms— Cloud computing, auto-scaling, 
resource-minimization 
 

1. INTRODUCTION 
 

Cloud computing has been a promising technology for 
hosting large scale video surveillance systems, which allows 
users to place IPCAMs at home and to stream surveillance 
video to cloud platform for storage. Video analysis service is 
often considered as an add-on feature that actively analyzes 
video stream and sends out alarms when suspicious events 
are detected. Due to the characteristics of video analysis, the 
processing time of a video clip containing suspicious events 
could be much longer than that of a video clip without 
suspicious events. Thus, the computing power needed for 
analyzing video streams varies from time to time. In addition, 
since cloud computing platform provides computing power 
as utilities, e.g., pay-as-you-go, minimizing the computing 
power means saving cost. For example, VMs can be 
consolidated into few physical machines and thus those 
physical machines without VM running on top of them can 
be turned off to save energy. For the above reasons, it is 
important to develop a mechanism that dynamically 
allocates computing power without sacrificing QoS.  

One way to deploy a live video processing system on 
cloud platform is to statically assign video streams to 
processing nodes. This method, however, is not a desirable 
solution as the processing time of a video stream varies from 
time to time. Thus, to meet the real-time requirements of 
surveillance systems, video streams are usually divided into 
small clips. According to the workload, clips are then 
dispatched to processing nodes [1]. Since job scheduling 
over multiple processing nodes is an NP-hard problem, 
several heuristic algorithms are proposed to address it. More 
specifically, in [2], each processing node equips with a task 
queue. A high computation task is divided into multiple sub-
tasks and inserted into queues of different processing nodes 
for being processed in parallel to shorten the entire finish 
time. In [3], a Map-Reduce-based framework for video 
transcoding is proposed. While tasks are assigned to 
computer based on a proposed minimal-complete-time 
algorithm, high computation tasks are assigned to powerful 
processing nodes. The above works, however, deal with 
fixed number of processing nodes without considering the 
capability of dynamically resource provisioning of cloud 
computing. 

To better utilize the cloud resources, many researches 
have been conducted that dynamically acquires VMs from 
platform when existing computing power is insufficient to 
handle the increasing workload. More specifically, Marshall 
[4] increases the number of VMs when jobs waiting in queue 
cannot be finished before deadline. Assuncao [5] proposes 
several policy-based mechanisms to decide when to acquire 
new VM instance under different workloads. In [6], both 
user performance requirements and budget concerns are 
taken into consideration. By allocating/deallocating VMs 
dynamically and assigning tasks to the most cost-efficient 
VMs, system can finish tasks within the deadlines at 
minimum financial cost. However, the above works make an 
assumption that application owners need to be able to 
estimate the task processing time before a task being 
submitted to the system, which in many cases, is not 
practical. 

In this paper, a computing resource minimization 
framework for cloud-based surveillance video analysis 
systems is proposed. Instead of asking users to estimate the 
workload of tasks, the proposed system pre-analyzes the 
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coming video clips and extracts useful information for 
estimating system workload. Based on the workload 
estimation result, system derives the number of VMs needed 
to process the tasks within the deadline.  

The rest of this paper is organized as follows. Section 2 
gives an architecture reference of cloud-based surveillance 
video analysis systems. Section 3 presents the proposed 
adaptive workload estimation mechanism. The performance 
evaluation is provided in Section 4. Conclusions are drawn 
in Section 5. 

 
2. SYSTEM ARCHITECTURE 

 
In this section, a cloud-based surveillance video analysis 

system is presented which is designed to analyze multiple 
surveillance video streams on the fly. As shown in Fig. 1, 
each stream is divided into small clips. The clip pre-analysis 
module analyzes the clips and packs clips along with 
metadata as small tasks. Multiple processing nodes get task 
one-by-one from the queue and perform the predefined 
video analysis algorithms such as object detection and 
license plate recognition. Whenever an object is detected or 
an unauthorized license plate is recognized, the information 
is inserted into a database for further handling, e.g. sending 
an alarm to security guards. After finishing a task, a 
processing node gets the next task from queue and repeats 
the above process. Different from [4][5][6], the proposed 
system does not require users to estimate the task processing 
time before a task being submitted to the system since we 
believe it is not practical. More specifically, the workload 
estimation module estimates current system workload based 
on the metadata provided by the clip pre-analysis module. 
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Fig. 1. System architecture 

 
In general, video analysis algorithms usually have 

several stages. Some stages may have useful information that 
can be used to estimate the processing time. For example, in 
license plate recognition algorithm we used in this paper [8], 
there are two stages including (a) license plate detection and 
(b) character recognition. Several candidates may be 
identified in license plate detection stage. Actually, the 
license plate detection does nothing but identifying rectangle 
objects, thus the candidates could be just rectangle objects 
that are not necessary to be license plates. Even though 
candidates could be just rectangle objects appeared in the 
picture, they are all needed to be sent to character 
recognition stage for further processing. The number of 
candidates can thus be seen as an indicator for estimating the 

character recognition processing time. Although the license 
plate recognition is used as an example in this paper, the 
proposed mechanism can easily be applied to all object 
detection based video analysis algorithms.   

 
3. ADAPTIVE WORKLOAD ESTIMATION 

 
In this section, we describe how to decide the number of 

needed VMs for processing video clips within the deadline. 
Let qi represent the time task i waiting in the queue and pi 
represent the time task i is processed. The turnaround time 
of task i can be calculated as Gi=qi + pi. Assume the expected 
turnaround time, i.e., deadline, is G, the goal is then to 
minimize the number of running processing nodes (k) while 
GidG for all tasks.  
 
1:  algorithm CalculateNumberOfNeededVM(k) 
2:  input: 
      k: the number of running VMs 
3:  begin 
4:    Num=k 
5:    loop do 
6:      MaxTurnaround=FindMaxTurnaround(Num,T,E,A) 
7:      if MaxTurnaround>ThresholdH then 
8:        increase Num by 1 
9:      else if MaxTurnaround<ThresholdL then 
10:       decrease Num by 1 
11:     else  
12:       goto done 
13:     end if 
14:   end loop 
15:   label done 
16:   return Num 
17: end 
18: function FindMaxTurnaroundTime(k,T,E,A) 
19: input: 
20:   k: the number of running VMs 
21:   T={T1,T2,…,Tk}, where Ti is the expected  

release time of VMi 
22:   E={e1,e2,…,en}, where ei is the estimated  

processing time of task i 
23:   A={a1,a2,…,an}, where ai is arrival time of  

task i 
24: begin 
25:   initialize Max=0 
26:   for all task i 
27:     find j where Tj=minimum(T) 
28:     if Tj+ei-ai>Max then 
29:       Max=Tj+ei-ai 
30:     end if 
31:     update Tj=Tj+ei 
32:   end for 
33:   return Max 
34: end 

Algorithm 1. Calculate the number of needed VMs. 
 

To achieve the goal, the workload estimation module 
simply simulates the task dispatching process to find the 
maximum turnaround time of tasks, as shown in Algorithm 1. 
If the maximum turnaround time is greater than a predefined 
threshold, denotes as ThresholdH, system acquires more 
VMs form cloud platform and does the simulation again. On 
the other hand, when the maximum turnaround time drops to 
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be lower than ThresholdL, system releases VMs from cloud 
platform.  

The reason to define ThresholdH and ThresholdL is to 
prevent the system from acquiring and releasing VMs 
frequently since there is a cost of starting up and shutting 
down a VM. Normally, it takes 1~2 minutes for a just-
turned-on VM to be ready for use. However, researchers of 
live VM cloning have shown that the time for cloning a live 
VM can be as fast as hundreds of milliseconds [8].  

 
4. PERFORMANCE EVALUATION 

 
In this section, experiments are conducted to evaluate the 

performance of the proposed mechanism. The license plate 
recognition is used to verify the performance of the 
proposed mechanism.  

 
4.1 LICENSE PLATE RECOGNITION 

 
There are two main stages: (1) license plate detection 

and (2) character recognition. The following describes the 
details. 

 
(1) License Plate Detection: the purpose of license plate 

detection is to identify candidates of license plate. The 
algorithm described in [7] is adopted where a 
predefined-size window is used to scan the whole image 
and to decide if the scanned region is a candidate based 
on the following three conditions: (a) edge density, (b) 
width/height ratio, and (c) width and height limit. 

(2) Character Recognition: to recognize license plate, each 
candidate is first segmented into possible character 
regions using the X-Y cut algorithm described in [7], 
which performs the x-direction scan on the candidate to 
find the highest and lowest horizontal positions of 
possible character region, and then performs a y-
direction scan to find the local peak value of the vertical 
gray-level projection. The possible character regions 
can thus be determined based on highest and lowest 
horizontal positions and width/height ratio of the 
character region. Each possible character region is then 
processed to extract character features including Zone, 
Cross, Histogram and Profile. And the Support Vector 
Machine [9] is used to recognize the character based on 
character features. Finally, string grammars are applied 
to characters to filter out incorrect candidate, and the a 
voting mechanism is adopted to improve the accuracy of 
the character recognition. 

 
In the experiments, 10~50 video sources of cars entering 

a company are used. Example images of sources are shown 
in Fig. 2. As most cars entering the company between 8AM 
to 9AM and leaving the company between 5PM to 6PM, the 
occurrence of license plates is likely to be bursty. The video 
source is encoded using H264/AVC codec, the resolution is 

720x480 and the frame rate is 30 frames/sec. The time of a 
just-started VM to be ready for use is assumed to be 400ms, 
which is the suggested value of live VM cloning in [8]. 

 

 
Fig. 2. The video content of cars entering company gate. 

 
4.2 EXPERIMENTAL RESULT 
 

In the experiments, the proposed mechanism is compared 
with two heuristic mechanisms: (a) Fixed VM Quantity and 
(b) Queue-Size. In Fixed VM Quantity (FVQ) mechanism, 
the number of VMs is fixed. More specifically, system 
administrator pre-decides the number of VMs based on 
historical experiences or the budget. This mechanism is easy 
to implement but is not adaptive to the variance of system 
workload. In Queue-Size (QS) based mechanism, jobs in the 
queue are assumed to have the same processing time, which 
is obtained by calculating the mean value of processing time 
of historical jobs. That is, the mechanism adjusts the number 
of VMs based on the number of jobs waiting in queue. 
However, in video analysis, each job may have different 
processing time, thus this mechanism cannot capture the real 
system workload. For example, video clips containing 
suspicious objects will consume more computing power than 
those without suspicious objects. That is, two systems 
having the same number of jobs waiting in queue are not 
necessary to have the same workload.  

Two metrics are used for performance evaluation: (a) 
Failure Job Ratio: the percentage of jobs that are failed to be 
finished before the deadline and (b) Average VM Quantity: 
the average number of running VMs. The deadline is set to 3 
seconds in the experiments, which means once a job comes 
in to the system; it needs to be finished within 3 seconds 
including the time waiting in queue and the time it is 
processed. 

We first evaluate the performance of Failure Job Ratio. 
As shown in Fig. 3, the proposed mechanism performs much 
better than the other two mechanisms in terms of Failure Job 
Ratio. There are 99.81% of jobs can be finished within the 
pre-defined deadline in the proposed mechanism while only 
97.58% of jobs can be finished within deadline in FVQ 
mechanism. The QS mechanism performs even worse than 
FVQ mechanism which is only 93.67%~85.32% of jobs can 
be finished with deadline. This indicates that the proposed 
mechanism can successfully predicts the system workload 
and thus precisely adjust the number of VMs. 
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Fig 3. The failure job ratio of the three mechanisms under 

the different number of video sources. 

Fig. 4. The average VM quantity of the three 
mechanisms under the different number of video sources. 

 
Then we evaluate the performance of Average VM 

Quantity under different number of video sources. As shown 
in Fig. 4, the proposed mechanism outperforms the FVQ 
mechanism regardless of the number of video sources. In 50 
video sources case, the proposed mechanism improves 22% 
in terms of Average VM Quantity.  

When comparing with QS mechanism, the proposed 
mechanism outperforms the QS mechanism by 21% and 
13% in 15 video sources and 20 video sources cases, 
respectively. Even though in other cases, the performance of 
QS and the proposed mechanisms seem to be similar, the QS 
mechanism fails to maintain the QoS as shown in Fig. 3. 
However, detecting suspicious events in real-time is critical 
in surveillance video analysis systems.  

In summary, the experimental results show that the 
proposed content-aware workload estimation mechanism is 
capable of correctly estimating the system workload. And 
thus the computing resources can be precisely allocated 
while the QoS is maintained. As the workload estimation is 
based on the number of suspicious objects in the images, the 
proposed framework can easily be applied to most of object-
based surveillance video analysis systems, especially for 
those requiring high computing power such as dynamic 
video synopsis [10].  
 

5. CONCLUSION 
 

In conclusion, we have shown that with carefully design, 
pre-analyzing video clips can derive insightful indicators 
that lead to better system workload estimation. With 
accurate workload estimation, one can thus have a better 
planning on computing resource usage. While the proposed 
workload estimation mechanism can easily be applied to 
object-based video analysis algorithms, for those that are not 
object-based video analysis algorithms are needed to be 
further investigated.   
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