
COMPUTING RESOURCE MINIMIZATION WITH CONTENT-AWARE WORKLOAD
ESTIMATION IN CLOUD-BASED SURVEILLANCE SYSTEMS

Peng-Jung Wu and Yung-Cheng Kao

Information and Communications Research Laboratories, Industrial Technology Research Institute,

Hsinchu, Taiwan

ABSTRACT

As cloud computing platform provides computing power
as utilities, it is important to develop a mechanism to
adaptively adjust the resources needed for handling cloud
service. In this paper, a computing resource minimization
framework for cloud-based surveillance video analysis
systems is proposed. Videos streams are divided into clips
and multiple processing nodes are used to handle clips.
While the quality-of-service (QoS) is maintained, the
proposed framework dynamically adjusts the number of
processing nodes based on a proposed content-aware
workload estimation mechanism. Experimental results show
that the proposed mechanism successfully predicts the
variability of system workload while QoS is maintained and
outperforms other mechanisms in terms of average virtual
machine (VM) quantity and job failure ratio.

Index Terms— Cloud computing, auto-scaling,
resource-minimization

1. INTRODUCTION

Cloud computing has been a promising technology for
hosting large scale video surveillance systems, which allows
users to place IPCAMs at home and to stream surveillance
video to cloud platform for storage. Video analysis service is
often considered as an add-on feature that actively analyzes
video stream and sends out alarms when suspicious events
are detected. Due to the characteristics of video analysis, the
processing time of a video clip containing suspicious events
could be much longer than that of a video clip without
suspicious events. Thus, the computing power needed for
analyzing video streams varies from time to time. In addition,
since cloud computing platform provides computing power
as utilities, e.g., pay-as-you-go, minimizing the computing
power means saving cost. For example, VMs can be
consolidated into few physical machines and thus those
physical machines without VM running on top of them can
be turned off to save energy. For the above reasons, it is
important to develop a mechanism that dynamically
allocates computing power without sacrificing QoS.

One way to deploy a live video processing system on
cloud platform is to statically assign video streams to
processing nodes. This method, however, is not a desirable
solution as the processing time of a video stream varies from
time to time. Thus, to meet the real-time requirements of
surveillance systems, video streams are usually divided into
small clips. According to the workload, clips are then
dispatched to processing nodes [1]. Since job scheduling
over multiple processing nodes is an NP-hard problem,
several heuristic algorithms are proposed to address it. More
specifically, in [2], each processing node equips with a task
queue. A high computation task is divided into multiple sub-
tasks and inserted into queues of different processing nodes
for being processed in parallel to shorten the entire finish
time. In [3], a Map-Reduce-based framework for video
transcoding is proposed. While tasks are assigned to
computer based on a proposed minimal-complete-time
algorithm, high computation tasks are assigned to powerful
processing nodes. The above works, however, deal with
fixed number of processing nodes without considering the
capability of dynamically resource provisioning of cloud
computing.

To better utilize the cloud resources, many researches
have been conducted that dynamically acquires VMs from
platform when existing computing power is insufficient to
handle the increasing workload. More specifically, Marshall
[4] increases the number of VMs when jobs waiting in queue
cannot be finished before deadline. Assuncao [5] proposes
several policy-based mechanisms to decide when to acquire
new VM instance under different workloads. In [6], both
user performance requirements and budget concerns are
taken into consideration. By allocating/deallocating VMs
dynamically and assigning tasks to the most cost-efficient
VMs, system can finish tasks within the deadlines at
minimum financial cost. However, the above works make an
assumption that application owners need to be able to
estimate the task processing time before a task being
submitted to the system, which in many cases, is not
practical.

In this paper, a computing resource minimization
framework for cloud-based surveillance video analysis
systems is proposed. Instead of asking users to estimate the
workload of tasks, the proposed system pre-analyzes the

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5050

coming video clips and extracts useful information for
estimating system workload. Based on the workload
estimation result, system derives the number of VMs needed
to process the tasks within the deadline.

The rest of this paper is organized as follows. Section 2
gives an architecture reference of cloud-based surveillance
video analysis systems. Section 3 presents the proposed
adaptive workload estimation mechanism. The performance
evaluation is provided in Section 4. Conclusions are drawn
in Section 5.

2. SYSTEM ARCHITECTURE

In this section, a cloud-based surveillance video analysis

system is presented which is designed to analyze multiple
surveillance video streams on the fly. As shown in Fig. 1,
each stream is divided into small clips. The clip pre-analysis
module analyzes the clips and packs clips along with
metadata as small tasks. Multiple processing nodes get task
one-by-one from the queue and perform the predefined
video analysis algorithms such as object detection and
license plate recognition. Whenever an object is detected or
an unauthorized license plate is recognized, the information
is inserted into a database for further handling, e.g. sending
an alarm to security guards. After finishing a task, a
processing node gets the next task from queue and repeats
the above process. Different from [4][5][6], the proposed
system does not require users to estimate the task processing
time before a task being submitted to the system since we
believe it is not practical. More specifically, the workload
estimation module estimates current system workload based
on the metadata provided by the clip pre-analysis module.

t4 t3 t2 t1

Queue

Workload
Estimation

VM

Processing Nodes

VM

VM

Stream Divider

on/off

m
etad

ata

Database

events

Video
Streams

Stream Divider

Stream Divider

Stream Divider

Clip Pre-analysis t5

Fig. 1. System architecture

In general, video analysis algorithms usually have

several stages. Some stages may have useful information that
can be used to estimate the processing time. For example, in
license plate recognition algorithm we used in this paper [8],
there are two stages including (a) license plate detection and
(b) character recognition. Several candidates may be
identified in license plate detection stage. Actually, the
license plate detection does nothing but identifying rectangle
objects, thus the candidates could be just rectangle objects
that are not necessary to be license plates. Even though
candidates could be just rectangle objects appeared in the
picture, they are all needed to be sent to character
recognition stage for further processing. The number of
candidates can thus be seen as an indicator for estimating the

character recognition processing time. Although the license
plate recognition is used as an example in this paper, the
proposed mechanism can easily be applied to all object
detection based video analysis algorithms.

3. ADAPTIVE WORKLOAD ESTIMATION

In this section, we describe how to decide the number of

needed VMs for processing video clips within the deadline.
Let qi represent the time task i waiting in the queue and pi
represent the time task i is processed. The turnaround time
of task i can be calculated as Gi=qi + pi. Assume the expected
turnaround time, i.e., deadline, is G, the goal is then to
minimize the number of running processing nodes (k) while
GidG for all tasks.

1: algorithm CalculateNumberOfNeededVM(k)
2: input:
 k: the number of running VMs
3: begin
4: Num=k
5: loop do
6: MaxTurnaround=FindMaxTurnaround(Num,T,E,A)
7: if MaxTurnaround>ThresholdH then
8: increase Num by 1
9: else if MaxTurnaround<ThresholdL then
10: decrease Num by 1
11: else
12: goto done
13: end if
14: end loop
15: label done
16: return Num
17: end
18: function FindMaxTurnaroundTime(k,T,E,A)
19: input:
20: k: the number of running VMs
21: T={T1,T2,…,Tk}, where Ti is the expected

release time of VMi
22: E={e1,e2,…,en}, where ei is the estimated

processing time of task i
23: A={a1,a2,…,an}, where ai is arrival time of

task i
24: begin
25: initialize Max=0
26: for all task i
27: find j where Tj=minimum(T)
28: if Tj+ei-ai>Max then
29: Max=Tj+ei-ai
30: end if
31: update Tj=Tj+ei
32: end for
33: return Max
34: end

Algorithm 1. Calculate the number of needed VMs.

To achieve the goal, the workload estimation module
simply simulates the task dispatching process to find the
maximum turnaround time of tasks, as shown in Algorithm 1.
If the maximum turnaround time is greater than a predefined
threshold, denotes as ThresholdH, system acquires more
VMs form cloud platform and does the simulation again. On
the other hand, when the maximum turnaround time drops to

5051

be lower than ThresholdL, system releases VMs from cloud
platform.

The reason to define ThresholdH and ThresholdL is to
prevent the system from acquiring and releasing VMs
frequently since there is a cost of starting up and shutting
down a VM. Normally, it takes 1~2 minutes for a just-
turned-on VM to be ready for use. However, researchers of
live VM cloning have shown that the time for cloning a live
VM can be as fast as hundreds of milliseconds [8].

4. PERFORMANCE EVALUATION

In this section, experiments are conducted to evaluate the

performance of the proposed mechanism. The license plate
recognition is used to verify the performance of the
proposed mechanism.

4.1 LICENSE PLATE RECOGNITION

There are two main stages: (1) license plate detection

and (2) character recognition. The following describes the
details.

(1) License Plate Detection: the purpose of license plate

detection is to identify candidates of license plate. The
algorithm described in [7] is adopted where a
predefined-size window is used to scan the whole image
and to decide if the scanned region is a candidate based
on the following three conditions: (a) edge density, (b)
width/height ratio, and (c) width and height limit.

(2) Character Recognition: to recognize license plate, each
candidate is first segmented into possible character
regions using the X-Y cut algorithm described in [7],
which performs the x-direction scan on the candidate to
find the highest and lowest horizontal positions of
possible character region, and then performs a y-
direction scan to find the local peak value of the vertical
gray-level projection. The possible character regions
can thus be determined based on highest and lowest
horizontal positions and width/height ratio of the
character region. Each possible character region is then
processed to extract character features including Zone,
Cross, Histogram and Profile. And the Support Vector
Machine [9] is used to recognize the character based on
character features. Finally, string grammars are applied
to characters to filter out incorrect candidate, and the a
voting mechanism is adopted to improve the accuracy of
the character recognition.

In the experiments, 10~50 video sources of cars entering

a company are used. Example images of sources are shown
in Fig. 2. As most cars entering the company between 8AM
to 9AM and leaving the company between 5PM to 6PM, the
occurrence of license plates is likely to be bursty. The video
source is encoded using H264/AVC codec, the resolution is

720x480 and the frame rate is 30 frames/sec. The time of a
just-started VM to be ready for use is assumed to be 400ms,
which is the suggested value of live VM cloning in [8].

Fig. 2. The video content of cars entering company gate.

4.2 EXPERIMENTAL RESULT

In the experiments, the proposed mechanism is compared
with two heuristic mechanisms: (a) Fixed VM Quantity and
(b) Queue-Size. In Fixed VM Quantity (FVQ) mechanism,
the number of VMs is fixed. More specifically, system
administrator pre-decides the number of VMs based on
historical experiences or the budget. This mechanism is easy
to implement but is not adaptive to the variance of system
workload. In Queue-Size (QS) based mechanism, jobs in the
queue are assumed to have the same processing time, which
is obtained by calculating the mean value of processing time
of historical jobs. That is, the mechanism adjusts the number
of VMs based on the number of jobs waiting in queue.
However, in video analysis, each job may have different
processing time, thus this mechanism cannot capture the real
system workload. For example, video clips containing
suspicious objects will consume more computing power than
those without suspicious objects. That is, two systems
having the same number of jobs waiting in queue are not
necessary to have the same workload.

Two metrics are used for performance evaluation: (a)
Failure Job Ratio: the percentage of jobs that are failed to be
finished before the deadline and (b) Average VM Quantity:
the average number of running VMs. The deadline is set to 3
seconds in the experiments, which means once a job comes
in to the system; it needs to be finished within 3 seconds
including the time waiting in queue and the time it is
processed.

We first evaluate the performance of Failure Job Ratio.
As shown in Fig. 3, the proposed mechanism performs much
better than the other two mechanisms in terms of Failure Job
Ratio. There are 99.81% of jobs can be finished within the
pre-defined deadline in the proposed mechanism while only
97.58% of jobs can be finished within deadline in FVQ
mechanism. The QS mechanism performs even worse than
FVQ mechanism which is only 93.67%~85.32% of jobs can
be finished with deadline. This indicates that the proposed
mechanism can successfully predicts the system workload
and thus precisely adjust the number of VMs.

5052

Fig 3. The failure job ratio of the three mechanisms under

the different number of video sources.

Fig. 4. The average VM quantity of the three
mechanisms under the different number of video sources.

Then we evaluate the performance of Average VM

Quantity under different number of video sources. As shown
in Fig. 4, the proposed mechanism outperforms the FVQ
mechanism regardless of the number of video sources. In 50
video sources case, the proposed mechanism improves 22%
in terms of Average VM Quantity.

When comparing with QS mechanism, the proposed
mechanism outperforms the QS mechanism by 21% and
13% in 15 video sources and 20 video sources cases,
respectively. Even though in other cases, the performance of
QS and the proposed mechanisms seem to be similar, the QS
mechanism fails to maintain the QoS as shown in Fig. 3.
However, detecting suspicious events in real-time is critical
in surveillance video analysis systems.

In summary, the experimental results show that the
proposed content-aware workload estimation mechanism is
capable of correctly estimating the system workload. And
thus the computing resources can be precisely allocated
while the QoS is maintained. As the workload estimation is
based on the number of suspicious objects in the images, the
proposed framework can easily be applied to most of object-
based surveillance video analysis systems, especially for
those requiring high computing power such as dynamic
video synopsis [10].

5. CONCLUSION

In conclusion, we have shown that with carefully design,
pre-analyzing video clips can derive insightful indicators
that lead to better system workload estimation. With
accurate workload estimation, one can thus have a better
planning on computing resource usage. While the proposed
workload estimation mechanism can easily be applied to
object-based video analysis algorithms, for those that are not
object-based video analysis algorithms are needed to be
further investigated.

6. REFERENCE

[1]. M. Saini, X. Wang, P. K. Atrey, and M. Kankanhalli,

“Adaptive Workload Equalization in Multi-Camera
Surveillance Systems,” IEEE Transactions on Multimedia,
Vol. 14, No. 3, June, 2012.

[2]. S. Lin, X. Zhang, Q. Yu, H. Qi and S. Ma, “Parallelizing
Video Transcoding With Load Balancing On Cloud
Computing,” In Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2864-
2867, May, 2013.

[3]. F. Lao, X. Zhang and Z. Guo, “Parallelizing Video
Transcoding Using Map-Reduce-Based Cloud Computing,”
In Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 2905-2908, May, 2012.

[4]. P. Marshall, K. Keahey and T. Freeman, “Elastic Site Using
Clouds to Elastically Extend Site Resources,” In
Proceedings of IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, pp. 43-52, May, 2009.

[5]. M. D. Assuncao, A. D. Costanzo and R. Buyya, “Evaluating
the Cost-benefit of Using Cloud Computing to Extend the
Capacity of Clusters,” In Proceedings of ACM international
symposium on High Performance Distributed Computing,
pp. 141-150, June, 2009.

[6]. M. Mao and M. Humphrey, “Auto-Scaling to Minimize
Cost and Meet Application Deadlines in Cloud Workflows,”
In Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC), pp. 1-12, Nov., 2011.

[7]. C. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D.
Psoroulas, V. Loumos, and E. Kayafas, “License plate
recognition from still images and video sequences: A
survey,” IEEE Trans. on Intelligent Transportation System,
vol. 9, no. 3, pp. 377–391, 2008.

[8]. Y. Sun, Y. Luo, X. Wang, Z. Wang, B. Zhang, H. Chen and
X. Li, “Fast Live Cloning of Virtual Machine Based on
Xen,” In Proceedings of IEEE International Conference on
High Performance Computing and Communications
(HPCC), pp. 392-399, June, 2009.

[9]. C. C. Chang and C. J. Lin, “LIBSVM : a library for support
vector machines,” ACM Trans. on Intelligent Systems and
Technology, vol. 2, no. 3, pp. 27:1-27:27, 2011.

[10]. A. Rav-Acha , Y. Pritch and S. Peleg, “Making a Long
Video Short: Dynamic Video Synopsis,” In Proceedings of
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 435-441, Jun., 2006.

5053

