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ABSTRACT 

 

Sparse-signal processing (SSP) is interpreted in this paper as 

a sparse model-based refinement of typical steps in radar 

processing. Matched filtering remains vital within SSP but 

joined with radar detection promoting the sparsity. Realistic 

measurements are also supported in SSP by using Monte-

Carlo (MC) methods. MC-based SSP promotes the sparsity 

by detection-driven MC-sampling that also improves 

efficiency. This MC extension aims for the stochastic 
description of sparse solutions, and the flexibility to use any 

prior on signals or on data acquisition, as well as any 

distribution of noise or clutter. Numerical experiments 

demonstrate favorable performance of the proposed SSP. 

 

Index Terms— compressive sensing, radar systems, 

sparse recovery, detection, non-Gaussian distribution 

 

1. INTRODUCTION 

Sparse-signal processing (SSP) is being studied nowadays as 
a major part of compressive sensing (CS) (e.g. [1]-[4], [7]-

[9], [22]-[23]). CS can improve radar performance because it 

is optimized to information in received data rather than only 

to the whole sensing bandwidth (e.g. [7], [10] and [13]). The 

information importance is also being emphasized in the 

information geometry (e.g. [5]). Pursuing practical CS in 

radar, we prefer stochastic SSP when treating noise, prior 

knowledge on signals or their data acquisition, and when 

providing results ([19]). In a way, stochastic SSP is giving a 
fresh boost to radar initiated in the fifties ([24]).  

In CS, raw radar measurements y are described as:  

              y = Ax + z  

by a sensing matrix A, a sparse radar profile x, signals Ax 
and (complex Gaussian) receiver noise z with zero mean and 

equal variances , p(z|)   exp|z|2/). Matched filtering 
(MF) produces the main statistics xMF, xMF = AH

y, in detection 

via a generalized likelihood ratio test (GLRT) (e.g. [6]). 

When the sparsity of x is formalized by a multivariate 

Laplace prior p(x|), p(x|)   exp|x|1), the maximum a 
posteriori (MAP) estimator of x, written as:  

xMAP = arg minx { y-Ax+ h|x 

gives the usual SSP from CS with the l1-norm |x|1 promoting 

the sparsity and the l2-norm |y-Ax| for minimizing the noise, 

together with a threshold h that balances between the two 

tasks (e.g. [1], [7] and [22]). An underdetermined system can 

be solved by SSP from (2), i.e. M measurements in y can be 

enough for N outputs in x, M < N, because of the sparsity, i.e. 

only K nonzeros in x, K < M, and incoherence of A, i.e. a low 

inner product between its different columns (e.g. [7]).  

In a realistic radar case, the straight physical nature of A 
suits CS and the incoherence well (e.g. [26]).  However, SSP 

from (2) can hardly work optimally. Firstly, the distribution 

of noise or clutter can often be non-Gaussian and even 

unknown in a closed form (e.g. [11]). Secondly, although a 

Laplace prior creates the usual SSP in (2), realizations from a 
Laplace distribution are hardly compressible ([2]). Thirdly, 

the control parameter h is signal dependent and cannot be 

known in advance.  In radar, h shall be treated as a threshold, 

and thus, related to detection metrics. Finally, SSP estimates 

can have unknown and arbitrary probability distributions. 
The stochastic description of the SSP solutions is lacking or 

simply assumed Gaussian for the convenience. 

In this paper, motivated by the practical CS in radar, we 
propose flexible SSP needed in realistic radar processing. 
Firstly, we recognize the natural role of radar detection in 
promoting the signal sparsity. In addition, we propose SSP 
based on Monte-Carlo (MC) methods that can accommodate 
realistic radar cases without restrictions from (2). This MC-
based SSP (MC-SSP) provides the stochastic behavior of 
sparse solutions, and accommodates any prior knowledge on 
signals or their data acquisition, as well as any distribution of 
noise or clutter. Finally, we design MC-SSP that promotes 
the sparsity not only by an explicit prior but rather by an MC-
sampling scheme and stopping criteria coming from an 
optimal detection strategy. Besides enabling the practical 
sparsity promotion, this approach also makes MC-SSP 
converge better and thus, be computationally efficient.  

1.1. Related Work 

MC-SSP is designed to perform tasks of MF and detection of 

radar processing. It promotes the sparsity by applying 
detection, and supports realistic cases by using MC methods. 

SSP has already been seen from a detection point of view 

but only in basic SSP from (2) with an orthogonal A when h 

is related to detection via GLRT ([12]). The threshold h has  
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Fig.1.  SSP in b) compared to a) traditional radar processing. 

also been approximated for arbitrary distributions but only 

by assuming that the data dependent parameters are known 

([20]). The control parameter h has also been studied in 

theory for specific CS goals (e.g. [8] and [25]).  

Another class of stochastic SSP applies to random 
sensing matrices, such as e.g. belief propagation and 

approximate message passing (e.g. [22] and [8]). This SSP is 

deeply based on (asymptotic) Gaussian assumptions as 

needed for its closed form. Moreover, sensing matrices in 

radar are intrinsically deterministic what cannot be ignored 

as it is valuable in real-time implementation ([19] and [26]).  

The MC approach in CS has also been studied in CS 

theory, e.g. for a universal goal in [3], for sparsity in [4] and 

[9], and for a combinatorial recovery in [15]. MC-SSP is 

more practical as aimed for the flexibility in radar systems. 

1.2. Outline and Main Contributions 

In Section 2, SSP is proposed with the main contributions of:  

 promoting the signal sparsity by radar detection,  

 using MC methods for non-Gaussian cases, and  

 combining the radar detection and the MC methods in a 
greedy manner for a practical design of SSP.  

In Section 3, the proposed-SSP performance is evaluated 

on simulated data in a range-only case. In Section 4, 

conclusions are drawn, and future work is indicated. 

2. SPARSE-SIGNAL PROCESSING IN RADAR 

In SSP for radar, estimated sparsity of a radar profile x is to 

be related to detection at a fixed probability of false alarms 

Pfa as shown in Fig.1. Other parameters will also be needed 

(shown by ?) but let us start with Pfa and only as also used 

in typical radar detection based on GLRT. The variance  is 

known (or estimated from data) while Pfa is fixed (and low!). 

Typical radar detection starts with two hypotheses: 

H1 : y = xi ai + z; and  H0 : y = z;                  (3) 

about y from (1) containing a target (H1) or not (H0) where ai 

is an ith column of A, and xi is the ith element of x. It results 

in the GLRT with xMF,i, xMF,i = ai
H
y, at a fixed Pfa where Pfa is 

probability defined by P{|xMF,i|>|H0} where = √        . 

The probability of detection Pd is defined by P{|xMF,i| >|H1}. 

In the MAP form of SSP from (2), h contains the noise 
variance  and the sparsity parameter  as: h = If related 
to GLRT, h equals ([12]). Such a link makes h (and 
become known in SSP from (2), and related to Pfa. Note 
that other detection strategies may also apply (e.g. [18]). 

Table 1. Proposed MC-SSP scheme 

 

In this paper, a detection-driven MC-SSP algorithm is 

presented in a basic case from (2) for the sake of clarity and 

fair comparison with the existing algorithm Complex Fast 

Laplace (cFL, [1] and [19] for complex signals). In cFL, the 

prior p(x|) is built from a complex Gaussian prior for x and 

a  hyper-prior for the variance of x. cFL refines actually xMF 
in a number of iterations by selecting significant elements 

based on increase in the assessed posterior in each element of 

x. cFL is also fast because of a greedy implementation based 

on optimization separable for each element n, n = 1,..,N. 

Other algorithms can be fast but not stochastic (e.g. [23]). 

MAP estimates can also be numerically approximated by 
using many MC realizations from an assessed posterior (e.g. 

[21]). Advances in MC techniques together with increasing 

computational power encouraged the development of 

feasible MC solutions (e.g. [17]). When translating the MAP 

estimation of cFL into an MC version, the SSP goal remains 

the same: to identify significant nonzeros {xn(k)} in an Nx1 

vector x satisfying (2) where n(k) indicates a column an(k) of 

an MxN matrix A, and {n(k)} is a resulting support set, k =1, 

.., K, K < M < N. A nonzero can be sought randomly, but it 

converges faster when the search is sensibly tailored.  

An approximation p(n |y,, h) of the individual posterior 
p(xn | y, x-n) (where the rest x-n is known or zero) is created to 

perform MC (importance) sampling that encourages selecting 
a good candidate n based on the detection goal: optimal Pd at 

a fixed Pfa. In this case, it is built at xMF and h with an LRT: 

p(y|xn, x-n)/p(y|0,x-n). An individual prior can be any prior but 

it serves the sparsity of x here via the detection threshold h.  

The MC-SSP scheme is outlined in Table 1. In each 
iteration k, each MC-realization l is used to draw an element 

nk,l
 
 with the weight wk,l, wk,l  p(nk,l | yres,k, h), l = 1,..,L. A 

single nonzero is sought from the greedy residuals yres,k, 

initially y, or the greedy remains xres, k, initially xMF, i.e. xres,1 = 

A
H
y. The best candidate n(k) with the highest weight 

assessed from {wk,l} is selected. An estimate xSSP,n(k) of its 

amplitude xn(k) is computed from xres,k. The MC generation 

repeats from p(n | yres,k+1, h) updated with the kth nonzero 
model-based contribution: xres,k+1 = xres,k – xSSP,n(k) A

H
an(k) and 

Inputs: y, A, , Pfa  (and a maximum number of iterations  Kmax) 

Outputs xSSP: sparse estimate  and its posterior  p xSSP| ( Pfa)y,  

Initialize: yres, 1 = y, xres,1 = AH
y, xSSP = 0, h (from and Pfa )  

Repeat for each iteration k till stopping (or up to Kmax):  

 1. Draw L elements {nk,l} and estimate their weights { wk,l}, 

l = 1, .., L, from p(n | yres, k, h)the importance density  

 2. Select an element n(k) from all  L elements in {nk,l } with 
best weight wn(k) from all L weights { wk,l } , l = 1, .., L 

 xSSP, n(k)  3. Estimate amplitude and posterior of best n(k)  

 yres, k+1 = yres, k - xSSP, n(k) an(k)4. Update residuals  

 xres, k+1 = A
H yres, k+15. Update remains  

 xres, k+1 | > h  or E[  yres, k+1 |
2] > ,  Continue if any | |

otherwise stop 

a) 

b) 
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yres,k+1 = yres,k - xSSP,n(k) an(k). This selection continues as long as 

the detection threshold h and convergence criteria hold. 

Note that SSP considers a set of nonzeros, i.e. multiple 

targets, and thus, facilitates actually the multi-target 

detection theory. E.g. probability of detecting the true 

support set of a sparse x depends on the signal-to-noise ratio 

(SNR), incoherence of A, etc. ([25]). In MC-SSP, it depends 

also on a chosen MC-sampling strategy and its size L. 

MC-SSP suits a realistic radar case whose likelihood and 

the priors are not restricted as in (2) to Gaussian likelihood or 

a Laplace prior only. MC-SSP enables any distribution 

including even empirical distributions being learned from 

measurements y. Moreover, the sparsity is promoted not only 

by an explicit prior but also by MC sampling and stopping 

criteria based on an optimal detection strategy. This makes 
MC-SSP more greedy and thus, computationally efficient. 

  

3. SIMULATION RESULTS 

Simulated data are used to demonstrate performance of SSP 
and MC-SSP. To keep the tests simple and clear, 

measurements are range only in pulse radar. In this basic 

radar case, M measurements in y from (1) are taken over one 

pulse repetition time with pulse length 25 and M equal to 

108. A sensing matrix A contains delayed replicas of a 

transmitted waveform that is a linear chirp with bandwidth 

equal to the unit sampling frequency. In order to have an 

underdetermined system (without compressive acquisition), 

M inputs remain, while the estimation grid is up-sampled to 

N outputs, N=250. The target locations are uniformly 

randomly chosen over all N possible range cells. The true 

amplitude of a target in x is set to one. A target SNR is given 

as an output SNR, SNR = 1/. 

Detection performance within SSP is tested at different 

values of a fixed Pfa and different values of SNR in a single-

target test case. Pd and Pfa are measured as: Pdm = Nd / Nr and 

Pfam = Nfa / Nr (N-1), by counting Nd detections and Nfa false 

alarms in Nr noise runs of cFL at = -lnPfa/. When 

counting, a detection or a false alarm means an estimated 

nonzero being a true nonzero or a true zero, respectively.  

At different SNR, measured Pfam remains fairly constant 

but differs from Pfa in the GLRT threshold, as shown in Fig.2. 

This indicates that this simple SSP threshold is a good start 

but needs further understanding and (fine) tuning. 

Existing SSP (cFL, [19]) and its MC version (Table 1) are 

compared with the same simulated radar data. The 

normalized mean squared error (MSE) in the estimated xSSP, 

MSE(xSSP) = |xSSP-x|2/|x||xSSP|, is computed for nonzero 

(targets) and zero elements in the true profile x, with the two 

SSP versions at different output SNR from 100 noise runs, all 

with 10 targets, and shown in Fig.3. The number L of the MC 

realizations in the MC-SSP tests is 100. 

At lower SNRs the MSE performance is even better for 

nonzeros in x, and slightly degraded for zeros as clear from 

Fig.3. At higher SNRs the performance is comparable.  

 

Fig.2.  Measured detection performance from SSP at a fixed Pfa. 

  

Fig.3.  MSE of range profiles x estimated by existing SSP (cFL 

from [19]) and its MC version (Table 1) for: a) all elements and b) 
zeros only, at different SNR from 100 noise runs.  

 

Fig.4.  Range profile x estimated from a single run by MF, 
existing SSP (cFL from [19]) and its MC version (Table 1). The 

threshold is computed at Pfain all runs. 

For further clarity, MF and the GLRT threshold together 

with both SSP estimates are shown in a single run in Fig.4. 

Traditional radar processing (after radar detection) would 

give the whole MF response above the detection threshold. 
Since SSP is model based, it produces only points as it knows 

the point-spread functions (given by A). Thus, SSP can 

replace not only MF followed by detection (Fig.1. ) but even 

more, as its outcomes are comparable with the traditional 

outcomes from (sub)clustering, i.e. a radar-processing step 

even further than detection.  

b) a) 
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4. CONCLUSIONS 

Practical SSP is designed to merge tasks of matched filtering 
and radar detection together as it refines their performance. 

This SSP promotes sparsity by applying radar detection, and 

also supports realistic radar cases by using MC methods. 

Practical MC-SSP promotes the sparsity via an MC-

sampling strategy based on a detection test what also 

improves its convergence and computational efficiency.  
The detection performance with a simple SSP threshold 

indicates a good start but needs fine tuning. The MSE 
performance of MC-SSP is comparable with existing SSP.  

In ongoing work, the SSP is further being investigated 

and tuned, and accordingly, the detection performance 

metrics are being quantified. Furthermore, optimal detection 

strategies, priors on radar signals and their data acquisition, 

distributions of noise or clutter, grid matching and tracking 

are being embedded in this MC-SSP framework. 

4.1 Future Work 

Optimal detection strategies at a fixed Pfa, are being explored 
within the SSP framework so that the performance metrics 
can be quantified (e.g. [25]). Not only SNR and a fixed Pfa 
are relevant but possibly also other (known) SSP parameters. 

Freedom in estimation (and observation) grids is being 

employed in CS radar (e.g. [14]). The estimation is preferred 
in a stochastic adaptive continuous grid. The grid design is 

also being studied from the Bayesian perspective ([16]), and 

within the scope of information geometry (e.g. [5]).  

Subsequently, MC-SSP will be further compared with 

the closed-form SSP, especially, regarding the detection 

performance and moreover, the computational efficiency 

with the optimal sampling strategies. Finally, the MC-SSP 

performance will also be tested in non-Gaussian cases as 

MC-SSP shall support any noise or clutter and moreover, 

shall also employ not only sparsity but also other prior 

knowledge about radar signals and their data acquisition. 
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