
A METHODOLOGY FOR OPTIMIZING BUFFER SIZES OF DYNAMIC DATAFLOW FPGAS
IMPLEMENTATIONS

Ab Al-Hadi Ab Rahman, Simone Casale-Brunet∗ , Claudio Alberti, Marco Mattavelli

EPFL SCI STI MM
École Polytechnique Fédérale de Lausanne, Switzerland

ABSTRACT
Minimizing buffer sizes of dynamic dataflow implementa-
tions without introducing deadlocks or reducing the design
performance is in general an important and useful design
objective. Indeed, buffer sizes that are too small causing a
system to deadlock during execution, or dimensioning un-
necessarily large sizes leading to a resource inefficient design
are both not a desired design option. This paper presents an
implementation, validation, and comparison of several buffer
size optimization techniques for the generic class of dynamic
dataflow model of computation called the dataflow process
network. The paper presents an heuristic capable of finding
a close-to-minimum buffer size configuration for deadlock-
free executions, and a methodology to efficiently explore
different configurations for feasible design alternatives. The
approach is demonstrated using as experimental design case,
an MPEG-4 AVC/H.264 decoder implemented on an FPGA.

Index Terms— Buffer size optimization, CAL dataflow
specifications, MPEG-4 decoder, FPGA

1. INTRODUCTION

The Dataflow Process Network (DPN) [1] is a Model of
Computation (MoC) that can be represented as a network of
processing elements called nodes implementing the processes
and edges representing the interconnections and implemented
as unidirectional FIFO channels. The processing nodes in a
DPN is typically referred to as actors, that encapsulate their
own state and do not share memory with one another. Actors
only communicate with each other exclusively by sending
and receiving tokens along the FIFO channels connecting
them. The DPN MoC does not impose any restriction on the
actor execution, where execution scheduling in general can
depend on the input data. For this reason the execution of a
DPN dataflow network in general cannot not be scheduled at
compile-time, and the bounds for the FIFO interconnections,
information necessary for actual implementations, cannot not
be determined statically, unlike other more restricted (and
much less expressive) MoC such as the synchronous dataflow

∗ Sponsored by the Fonds National Suisse pour la Recherche Scien-
tifique, grant 200021.138214.

(SDF) and their variants [2]. In general, the problem of
dimensioning buffers for a DPN network is considered unfea-
sible, however in most of streaming application cases such as
in video and audio coding for instance, it is meaningful and
useful to determine buffer size configurations satisfying a set
of statistically representative input stimuli that covers with
extremely high probability the typical use cases.

In this work, two optimization approaches are imple-
mented, validated, and compared: the first is the classical
approach where an analysis is performed on the dataflow pro-
gram itself, and the second is based on a recently proposed
approach based on post-processing the information contained
in the so-called execution trace. For each of these approaches,
the objectives are 1) to find a close-to-minimum buffer size
configuration, and 2) to find larger optimized configurations
for higher throughput design requirements. As design case,
the subset of the CAL dataflow language [3] standardized by
ISO/MPEG has been used to design an MPEG-4 AVC/H.264
decoder [4]. The high-level CAL dataflow program imple-
menting the AVC decoder has been synthesized directly to
HDL for obtaining an FPGA implementation, where the
buffer size configuration had to be determined.

1.1. RELATION TO PRIOR WORK

Relatively few works concerning buffer size optimization
techniques applied to DPN MoC can be found in literature,
if we compare with the vast literature devoted to SDF such
as [5], [6], [7] and related references. Most of the techniques
used for both SDF and DPN, follow the same approach, i.e.
by employing some determined static and dynamic schedul-
ing strategies respectively applied to SDF and DPN networks.
Another approach is based on the analysis of the execution of
an application, obtained from a representative input stimuli
set. This work completes by comparing some traditional ap-
proaches presented in literature with the initial results of the
alternative approach presented in [8]. Moreover, this work
validates the buffer size optimization techniques, by applying
it to a complex implementation of an MPEG-4 AVC/H.264
decoder as design case. Finally, the work also presents com-
parisons with some state-of-the-art approach in buffer size
optimizations.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5036

2. BUFFER SIZE OPTIMIZATION: CLASSICAL
STATE-OF-THE-ART APPROACH

The simplest way to assign buffer sizes to the communica-
tion channels for the execution of a DPN network is based on
transforming the network G to produce a semantically equiv-
alent network G0 that is bounded by b0 (size for all inter-
connections). This transformation may introduce deadlock
[9] such that the network G0 represents only a partial execu-
tion of the original network G. However, if the execution of
the network G0 never stops and results in a complete execu-
tion, then we have succeeded in implementing a complete and
bounded execution. If the execution ofG0 stops, it means that
the chosen bound b0 is too small. One or more of the channels
require a buffer size larger than b0, therefore, a larger bound
b1 > b0 must be chosen. The bound can be relaxed succes-
sively, b0 < b1 < b2 < . . . until a complete execution is
obtained. By definition, there exists a bound b that is finite if
the network G can be executed in finite time. After N itera-
tions, a bound bN ≤ b0 that corresponds to a complete exe-
cution of the network GN is obtained. The essential problem
of this approach is that all communication channels results in
the same capacity value, which in most cases, is not required
for a complete and deadlock-free execution. This also results
in a waste of platform resources.

2.1. Finding close-to-minimum buffer configuration

In the following, the techniques proposed in [7, 9] are sum-
marized. The initial capacities of all channels are set to 1, and
a simulation is performed. If execution stops due to dead-
lock, it means that one or more actors are blocked writing to
a full channel. Increasing the capacity of channels that are
not full does not allow execution to continue. It is necessary
to increase the capacity of one or more full channels. It is
important not to increase the largest buffer because this could
lead to unbounded growth of that buffer. Therefore, only the
capacity of the smallest full channel is increased, because this
guarantees that every full channel will eventually be increased
if necessary to unlock the program. The reasoning is that
if the same channel is increased repeatedly, then eventually
it will no longer be the smallest full channel. If some full
channel other than the smallest full channel is increased, then
some buffer could grow without bound. The way to prevent
this from happening is to increase the smallest full channel
and to avoid additional tokens being added to destination ac-
tions with already sufficient input tokens. This technique has
been implemented using a Modelsim TCL script for a fully
automated approach applied at the hardware execution level.

2.2. Buffer configuration with throughput constraints

Buffer size configurations that are close-to-minimum typi-
cally do not yield a design with high streaming throughput.
This is due to the fact that actor executions depend on the

availability of input tokens. Small buffer sizes would likely
result in a lower level of parallel actor executions due to the
scarce availability of data tokens in the network.

This subsection describes an approach that finds a close-
to-minimum buffer size configuration given a throughput con-
straint. Starting from a network with bound b for all intercon-
nections, the buffer sizes can be limited either directly [10,
11] or indirectly [12] using feedback channels such that a
lower overall buffer size can be obtained, but at the same time
achieving the same throughput achievable by the configura-
tion with a buffer size with bound b. The following describes
the direct buffer size reduction technique, which is suited for
hardware implementation target with implicit control.

First, a large enough buffer bound b is searched for, such
that a relatively high throughput P is obtained. Such bound
configuration can be found, for instance, using a binary log-
arithmic search. The bound b is applied to each interconnec-
tion channel fi where i ∈ {1 . . .m} for m total channels. A
simulation of the program is performed for duration T , and
the peak-capacity, Cappeakfi

(maximum number of tokens at
any given time) of each channel is monitored at every time
step. The number of tokens in each channel is expected to
fluctuate during simulation due to tokens production and con-
sumption. At the end of simulation at time T , the final values
of Cappeakfi

are the minimal buffer size requirements for the
throughput P . The new buffer size configuration using this
peak capacity is expected to be lower than the original bound
b, but is able to guarantee the same execution order and there-
fore, the same throughput as well. This technique has also
been implemented using a TCL script obtaining a fully auto-
matic analysis and optimization tool.

3. BUFFER SIZE OPTIMIZATION BASED ON THE
EXECUTION TRACE ANALYSIS

Rather than performing the analysis directly on the DPN net-
work, feasible buffer size configurations can also be found
based on the analysis of their executions. For clarity, a short
introduction about the concept of execution trace graph is pro-
posed in the following. Interested readers can refers for more
details to [13]. The causation trace is a multi directed acyclic
graph G(V,E). Each single firing of an action represents a
node υi ∈ V . An execution dependency between two firings
represents an arc (υi, υj). This latter defines an execution or-
der υi ≺ υj , meaning that the execution of υj depends on
the execution of υi. It follows that V can be considered as a
partially ordered set of executed actions. Indeed, construct-
ing a consistent dependencies set E is fundamental in order
to define constraints on the execution order between any cou-
ple of fired actions describing a platform-independent design
behaviour. Causation traces need to be built carefully so as to
provide a solid basis to produce quantified statements about
a dataflow program execution. In fact, in the general case of
a dynamic data flow network, such as the one expressed by

5037

the CAL dataflow language, the dependencies set can vary
by changing the input stimulus. In other words, the explored
states of a dynamic design can be dependent to the provided
input. However, in the case of systems implementing several
classes of signal processing applications (e.g. video or audio
codecs, packet switching in communication networks), prob-
abilistic approaches are meaningful representations of the un-
derlying processing model. Therefore, input sets that are suf-
ficiently large with respect to the type of application can be
used to generate statistically meaningful causation traces.

Moreover, the causation trace can be analyzed (i.e. post
processed) in order to obtain some design performance met-
rics. For the purpose of this work we make use of the follow-
ing terms:

• Weighted execution trace: the extension of the execu-
tion trace obtained by assigning a weight wυi to each
υi ∈ V.

• Trace critical path: the longest weighted path from
source to sink nodes in the execution trace. If weights
wυi correspond to the action firing computational load,
then the trace critical path can be related to the overall
execution time.

For a given dataflow design it is possible to define a per-
formance upper bound and lower bound in terms of through-
put. The highest throughput can be achieved supposing an
unbounded or close-to-infinite buffer size configuration. Con-
versely, the lowest throughput can be obtained with a close-
to-minimal buffer size configuration, and consequently the
overall memory requirement results to be as well close-to-
minimal. The goal is to find a trade-off between design per-
formance (i.e. in terms of throughput) and resource utilization
(i.e. in terms of memory necessary to implement all the inter-
connection buffers).

3.1. Finding close-to-minimum buffer configuration

For a given execution trace, the objective is to find a buffer
size configuration xβ such that it guarantees a deadlock-free
scheduling with a minimum buffer size configuration. In
other terms, we want to find a topological order of V such
that all the υi ∈ V can be executed minimizing the overall
buffer size configuration. As proposed in [14], the dependen-
cies set E is split among internal dependencies EI and FIFO
dependencies EF. The execution trace graph is then analyzed
with a graph-walk based method method. At each step k,
a single node υki ∈ V is analyzed: If the action is fireable,
then it is added to the last position of the new topological
sorted vector V = {υi ≺ υi+1|υi ∈ V, υi+1 ∈ V}, its
outgoing FIFO dependencies are made available one by one
and consumer nodes are analyzed during the next execution
step. If the action is not yet fireable, the graph is walked
back to analyze the parent steps. If the dependencies on in-
coming FIFO are not satisfied, they are polled one by one

where the corresponding producer nodes are analyzed during
the following execution step. The analysis is completed after
all input tokens are consumed, in which case the final action
firing schedule is obtained. The buffer size configuration
corresponding to this final ordering is found to be close-to-
minimum since the execution is ordered such a way that the
sequence of action firing generates the smallest amount of
token on a given edge.

3.2. Buffer size and throughput trade-off exploration

Given the minimum and maximum buffer size configurations
x0β and xmaxβ , the objective is to find a buffer size configu-
rations with size B(x0β) ≤ B(xβ) ≤ B(xmaxβ) such that a
feasible trade-off between performance and overall memory
requirement is identified. B(x0β) can be found using one of
previous mentioned heuristics; the maximum size is taken as
the design with an unbounded buffer size configuration. Con-
sequently, in terms of the trace critical path the following re-
lation can be obtained:

CP (xmaxβ) ≤ CP (xβ) ≤ CP (x0β) (1)

Since the trace critical path is defined according to a weighted
execution trace, the weights are platform-specific. For a
synchronous hardware implementation they correspond to
the number of clock cycles required for each action firing.
Thence, the weight wυi can be defined such that:

wυi = wαυi + w
xβ
υi (2)

where wαυi is the time required for performing the action al-
gorithmic part and wxβvi is the time overhead introduced by
the finite buffer size configuration xβ . This later models the
additional latency incurred by a blocked action firing due to
insufficient output buffer space. It represents the time elapsed
from the moment υi becomes fireable until its output buffer
has enough space to store the produced tokens. In such case,
we can observe that in (1), the trace critical path is longer for
buffer configuration xβ compared to xmaxβ due to wxβvi term.

The following describes how the buffer sizes can be in-
cremented for exploring higher throughput. For each explo-
ration step, the size of the most critical buffer is increased by
the number of maximal blocked tokens τ̂(bi). The new buffer
configuration is given by

xk+1
β = xkβ + τ̂(b∗), b∗ ∈ CB (3)

The set of critical buffers CB is retrieved from the blocked
buffers of the critical actions CA in the critical path. By in-
creasing the buffer size of the most critical buffer b∗, the over-
all execution time can be reduced since a higher output rate is
obtained due to a larger output buffer space. This process of
finding and increasing the critical buffer size at each step can
be performed iteratively until: a saturation is reached where

5038

further increments to the critical buffers do not lead to fur-
ther reductions to the overall execution time or a good trade-
off between throughput and overall buffer size requirement is
achieved.

4. EXPERIMENTAL RESULTS

Experimental results are applied to the two main components
of a standard MPEG-4 AVC/H.264 decoder: the Decoder Y
and the Decoder U/V branches. Each consists of a residual
part with the Hadamard transform and the inverse quantiza-
tion; the intra prediction part for block sizes of 16x16, 4x4,
and 8x8; the inter prediction part with half and quarter pixel
interpolation, bilinear interpolation, and the deblocking fil-
ter. The number of interconnection channels corresponding
to this design is 188 and 58 respectively for Decoder Y and
Decoder U/V. The throughput, measured in QCIF frames per
second (fps), is obtained by simulating the design in RTL to
obtain the latency in number of clock cycles per frame. The
RTL design is mapped on a Xilinx Virtex-5 FPGA so as to
obtain the maximum operating frequency (Fmax = 114 MHz
and 79 MHz respectively for Decoder Y and Decoder U/V).

Table 1 summarizes the result of the different dimension-
ing strategies. Overall we can observe that the direct method
(b=8197 for each interconnection) results in very inefficient
buffer size requirement. Using the proposed approach for
buffer size minimization (TCPmin), the total buffer size can
be reduced by up to 36 times, but the resulting throughput is
also reduced by a factor of about 70%. Compared to the clas-
sical Park buffer size minimization approach, our approach
also results in a total buffer size reduction of about a factor 2,
with only a 16% reduction of throughput. In terms of maxi-
mizing the throughput, the proposed approach (TCPopt) re-
sults is also quite effective, with a factor 13 reduction of the
total buffer size and about 15% throughput reduction when
compared to the classical buffer size optimization approach.

The results given in Fig. 1 provides the comparison of the
estimated with the actual throughput reduction obtained by
applying our buffer size optimization techniques. The anal-
ysis has been performed using the TURNUS co-exploration
framework developed by the authors [15]. The estimated
values are obtained by measuring the total execution time
at the dataflow program level, whereas the actual values are
obtained by hardware simulation of the synthesized dataflow
program. Overall, it can be observed that the estimated and
the actual measured throughput values are consistent, and
provide very good approximation of the performance gain
that can be obtained by actual implementation.

5. CONCLUSION

In this paper, an implementation, validation, and compari-
son of several buffer size dimensioning techniques applied
to DPN implementations has been presented. The proposed

Table 1. Comparison of total buffer size (Mbits) and through-
put (QCIF fps) for all buffer size configuration methods. The
design case is on the Decoder Y and Decoder U/V of the
MPEG-4 AVC/H.264 decoder.

Config Decoder Y Decoder U/V
method Buffer Through- Buffer Through-

size put size put
b=8197 19.59 916 4.89 1092
[7, 9](min) 1.12 621 0.31 941
[10, 11](opt) 8.03 916 1.11 1092
TCPmin 0.52 534 0.17 909
TCPopt 0.63 797 0.19 1092

500 550 600 650 700 750 800 850
0.5

0.55

0.6

0.65
Decoder_Y buffer size−throughput exploration

To
ta

l b
uf

fe
r s

iz
e

(M
bi

ts
)

Throughput (QCIF fps)

TCP
min

 (estimation)

TCP
opt

 (estimation)

TCP
min

 (actual)

TCP
opt

 (actual)

800 850 900 950 1000 1050 1100 1150 1200
0.15

0.16

0.17

0.18

0.19

0.2
Decoder_U/V buffer size−throughput exploration

To
ta

l b
uf

fe
r s

iz
e

(M
bi

ts
)

Throughput (QCIF fps)

TCP
min

 (estimation)

TCP
opt

 (estimation)

TCP
min

 (actual)

TCP
opt

 (actual)

Fig. 1. Buffer size-throughput exploration graphs for esti-
mated and actual performance results using our optimization
techniques for the Decoder Y and Decoder U/V case studies.

approach based on post-processing the execution trace has
been compared with a classical state-of-the-art approach. The
design case consisted of an FPGA implementation of a very
complex processing provided by an MPEG-4 AVC/H.264 de-
coder employing 246 buffers, a real-size design case that can-
not be handled efficiently by direct designer intervention. Re-
sults show that our approach is very effective in minimizing
and optimizing the total buffer size in a dataflow network,
with significant reductions in the required overall size and
with the possibility of finding case by case the appropriate
trade-offs between buffer resource and streaming throughput,
outperforming results obtained using the classical approach.

5039

6. REFERENCES

[1] E.A. Lee and T.M. Parks, “Dataflow process networks,”
Proceedings of the IEEE, vol. 83, no. 5, pp. 773 –801,
May 1995.

[2] E.A. Lee and D.G. Messerschmitt, “Synchronous Data
flow,” Proceedings of the IEEE, vol. 75, no. 9, pp. 1235
– 1245, 1987.

[3] J. Eker and J. Janneck, CAL Language Report: Spec-
ification of the CAL Actor Language, University of
California-Berkeley, December 2003.

[4] J. Gorin, M. Raulet, Y-L Cheng, H. Y Lin, N. Siret,
K. Sugimoto, and G.G. Lee, “An RVC dataflow descrip-
tion of the AVC Constrained Baseline Profile decoder,”
in Image Processing (ICIP), 2009 16th IEEE Interna-
tional Conference on, 2009, pp. 753–756.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Syn-
thesis of embedded software from synchronous dataflow
specifications,” Journal of VLSI Signal Processing Sys-
tems for Signal, Image, and Video Technology, vol. 21,
no. 2, pp. 151–166, 1999.

[6] M. Geilen, T. Basten, and S. Stuijk, “Minimising
buffer requirements of synchronous dataflow graphs
with model checking,” in Proceedings - Design Automa-
tion Conference, 2005, pp. 819–824.

[7] Weichen Liu, Zonghua Gu, Jiang Xu, Yu Wang, and
Mingxuan Yuan, “An efficient technique for analysis
of minimal buffer requirements of synchronous dataflow
graphs with model checking,” in Proceedings of the
7th IEEE/ACM international conference on Hardware/-
software codesign and system synthesis, New York, NY,
USA, 2009, pp. 61–70.

[8] S. Casale-Brunet, M. Mattaveli, and J.W. Janneck,
“Buffer optimization based on critical path analysis of a
dataflow program design,” in IEEE International Sym-
posium on Circuits and Systems 2013 (ISCAS 2013),
2013, pp. 1–4.

[9] T. M. Parks, Bounded Scheduling of Process Networks,
PhD Thesis-University of California-Berkeley, Decem-
ber 1995.

[10] K. Pingali and A. Arvind, “Efficient demand-driven
evaluation. part 1,” ACM Transactions in Programming
Language Systems, vol. 7, no. 2, pp. 311–333, April
1985.

[11] K. Pingali and A. Arvind, “Efficient demand-driven
evaluation. part 2,” ACM Transactions in Programming
Language Systems, vol. 8, no. 1, pp. 109–139, January
1986.

[12] D. B. MacQueen G. Kahn, “Coroutines and networks
of parallel processes,” in Information Processing, 1977,
pp. 993–998.

[13] S. Casale-Brunet, A. Elguindy, E. Bezati, R. Thavot,
G. Roquier, M. Mattavelli, and J. W. Janneck, “Methods
to explore design space for MPEG RMC codec speci-
fications,” Signal Processing: Image Communication,
vol. 28, no. 10, pp. 1278 – 1294, 2013.

[14] S. Casale-Brunet, C. Alberti, M. Mattavelli, and J. Jan-
neck, “Design space exploration of high-level stream
programs on parallel architectures,” Conference: 8th
International Symposium on Image and Signal Process-
ing and Analysis (ISPA 2013), Trieste, Italy, September
2013.

[15] S. Casale-Brunet, C. Alberti, M. Mattavelli, and J. Jan-
neck, “Turnus: a unified dataflow design space explo-
ration framework for heterogeneous parallel systems,”
2013 Conference on Design and Archtictures for Signal
and Image Processing (DASIP), Cagliari, Italy, October
2013.

5040

