
DENOISING USING MULTI-STAGE RANDOMIZED
ORTHOGONAL MATCHING PURSUIT

Stefanos Koskinas and Ioannis Psaromiligkos

Department of Electrical & Computer Engineering, McGill University, Montreal, Quebec, Canada
Email: stefanos.koskinas@mail.mcgill.ca, yannis@ece.mcgill.ca

ABSTRACT

Orthogonal Matching Pursuit (OMP) can denoise a signal by greed-
ily approximating a least-squares (LS) estimate as a linear combi-
nation of elements (atoms) of a dictionary. OMP iteratively decom-
poses a signal through deterministic atom selections at each itera-
tion step. Recently proposed randomized OMP algorithms employ
random atom selections instead and have the potential to further im-
prove denoising. Typically, the best approximation from these algo-
rithms can be obtained only within a narrow range of iterations. In
this paper, we propose a novel multi-stage randomized OMP (MS-
ROMP) denoising approach that performs successive ROMP runs,
each denoising the obtained estimate from the previous one. We
show through simulations that, under certain conditions, this can sig-
nificantly improve denoising performance by producing a good ap-
proximation after any number of iterations beyond the sparsity level.

Index Terms— Greedy approximation, orthogonal matching
pursuit, randomized algorithms, signal denoising

1. INTRODUCTION

Denoising, i.e., extracting a clean signal from its noisy observations,
is a vital task in the field of signal processing. The need for compu-
tationally efficient methods has led to the use of greedy approaches,
such as Matching Pursuit (MP) [1], Orthogonal Matching Pursuit
(OMP) [2], and other variants [3–6]. These approaches approximate
the least squares (LS) solution by iteratively decomposing a signal
into a linear combination of elements from a dictionary, selecting
one element per iteration. Compared to direct LS, they require less
computation by scaling down the matrix inversions required, but they
can also provide better estimates as they implicitly perform regular-
ization and, hence, avoid overfitting. Greedy approximation algo-
rithms have also been investigated with respect to the popular and
related compressive sensing topic [5, 7, 8].

In this paper, we consider OMP-based denoising algorithms
that have demonstrated encouraging results, especially for the case
of sparse signals [9, 10]. In the original OMP form [2], the atoms
are selected from the dictionary deterministically. More recent
work [11–13] has proposed selecting atoms randomly instead, which
has shown potential to further improve denoising performance. Of
particular interest to us is the recently proposed RandOMP algo-
rithm [12]. RandOMP produces multiple decompositions that are
differentiated by selecting atoms randomly according to a distri-
bution that is exponentially biased towards larger projections. The
decompositions are then averaged into a single one that can provide
a better denoised signal than the OMP decomposition.

However, the quality of the estimate is sensitive to the number of
iterations executed, since it depends on the sparsity and noise levels.
In fact, a good approximation can be obtained only within a nar-
row range of iterations, after a good representation of the noiseless
signal has been constructed but before overfitting to match the obser-
vation. In this paper, we modify the distribution of selecting atoms
randomly into a linear bias towards larger projections and propose a
novel algorithm with random atom selections and multiple stages1,
hence named multi-stage randomized OMP (MS-ROMP), in order
to widen the range of iterations wherein a good estimate can be ob-
tained. Each stage performs an independent ROMP run, which aims
at decomposing the obtained estimate of the previous stage instead
of the original observation. By iteratively decomposing the obtained
estimate, noise components can be permanently discarded, thus de-
sensitizing the dependence on the noise level and improving perfor-
mance for a wider range of iterations, so that we may stop the algo-
rithm after any number of iterations (beyond a certain minimum).

This paper is structured as follows. In Section 2, we define the
denoising problem and describe RandOMP. In Section 3, we modify
RandOMP’s distribution of selecting atoms and propose our novel
MS-ROMP algorithm. Finally, simulation results are discussed in
Section 4 and our conclusions are summarized in Section 5.

2. PROBLEM FORMULATION AND BACKGROUND

2.1. Problem formulation

Let x ∈ RN be an unknown signal that is corrupted by additive
white Gaussian noise (AWGN) n ∈ RN , yielding the observed noisy
signal y = x+n ∈ RN . Our goal is to extract the signal component
x in y, i.e., denoise y.

We assume that x is k-sparse over a known dictionaryD, that is,
it can be expressed as a linear combination of k elements (referred to
as atoms) inD. We will representD as a matrixD ∈ RN×M whose
M column vectors, denoted dj , j = 1, ...,M , represent the dictio-
nary atoms and are assumed to be normalized, i.e., ‖dj‖2 = 1. We
also assume that D is over-complete, i.e., M > N , so that any sig-
nal in RN can be represented by more than one linear combination
of atoms in D. The assumption that x is k-sparse over D translates
to the existence of a vector α ∈ RM containing k non-zero elements,
such that x = Dα.

1Stages here refer to successive algorithm runs; this differs from some
cases in the literature, e.g., StOMP [6], where stages replace iterations.
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2.2. Background: RandOMP-based denoising

RandOMP [12] is an iterative procedure for the expansion of y as
a linear combination of atoms, described as follows. Let the initial
residual be r(0) = y, and suppose that at the (i − 1)th iteration we
have the following decomposition of y

y = D(i−1)α(i−1) + r(i−1), (1)

where D(i−1) is the sub-matrix of D containing the atoms so far
selected, and α(i−1) is the vector containing the corresponding co-
efficients. The residual r(i−1) is then used to select the next atom to
be included in the decomposition of y. Instead of selecting the atom
that maximizes |〈r(i−1), d(i)〉| as in OMP [2], the selection is made
randomly, so that, the larger the projection on an atom, the higher the
probability of choosing that atom. More specifically, the probability
of selecting the jth atom, j = 1, ...,M , is set to be exponentially
proportional to its projection magnitude, that is

pexp(j) ∝ exp

(
c
∣∣∣dTj r(i−1)

∣∣∣2), c =
σ2
x

2σ2(σ2
x + σ)2

, (2)

where σ2
x and σ2 are the signal and noise variances, respectively, and∣∣∣dTj r(i−1)
∣∣∣ are the projection magnitudes.

Finally, as in OMP, y is projected on the set of selected atoms by
solving the minimization problem

α(i) = arg min
α∈Ri
‖D(i)α− y‖22, (3)

thus producing a new decomposition and residual as in (1). The
solution in (3) makes r(i) orthogonal to all atoms in D(i), thus pro-
ducing zero-coefficient projections on all atoms in D(i) in the next
iteration (i + 1). Consequently, atoms can only be chosen once,
and RandOMP guarantees perfect decomposition of y (that is, zero
residual) afterN iterations (the signal’s dimension) [2]. We note that
D(i)α(i) can be generalized to Dα; the coefficients in α at indices
that correspond to non-selected atoms are set at zero, thus cancelling
the respective columns (atoms) in D. Then, the solution α produces
the estimate x̂ = Dα.

RandOMP exploits multiple runs (each decomposing the same
observation y), referred to here as paths, to produce different solu-
tions. Let α` be the solution vector of the `th path for ` = 1, ..., L
paths. It has been shown in [12] that averaging the solutions as

α̂ =
1

L

L∑
`=1

α`. (4)

can produce a better estimate x̂ = Dα̂ of x. That is, the estimate
error to x from the RandOMP solution α̂, ‖Dα̂ − x‖, is smaller
than the error from the OMP solution α, ‖Dα− x‖, produced from
(locally) optimal atom selections2. We note that individual path so-
lutions are constrained to be sparse similar to the OMP solution, but
the average solution may not be sparse.

The algorithm runs for a pre-specified number of iterations per
path. Assuming that x is k-sparse onD, we may stop each path after
k iterations to obtain an estimate that is k-sparse over D. We ex-
pect that the first k selected atoms are sufficient to represent x, while

2OMP selections are only optimal within each iteration since they are
greedily selected instead of collaboratively (see Optimized OMP [3]).
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Fig. 1. Normalized RandOMP estimate error to x per iteration for
two SNRs (see parameters in the simulations section).

we also expect that further iterations would incorporate more noise
into the estimate. This behaviour, shown in Figure 1, implies that
both OMP and RandOMP approach x on the path towards y, illus-
trated from the shape of a ‘dip’. Evidently, RandOMP’s replacing of
OMP’s optimal deterministic selections by suboptimal random se-
lections allows some deviation and a slower progression on the path
towards y, which produces a wider ‘dip’, thus remaining closer to x
than OMP for a larger number of iterations3.

3. THE MULTI-STAGE RANDOMIZED OMP

Random atom selections in RandOMP can improve denoising per-
formance by allowing different paths towards y, whereby some paths
may approach xmore than OMP’s single deterministic path. In noisy
environments where x is far from y, the RandOMP estimate may
remain closer to x for a larger number of iterations than the OMP
estimate. The denoising performance depends on the bias towards
larger projections (in this case, RandOMP’s exponential bias in (2)
vs. OMP’s maximum projection), which, in turn, must be chosen
relative to the noise level. In low-noise situations, representing x is
similar to representing y, so larger projections should be preferred.
Conversely, in high-noise situations, we should allow suboptimal
atom selections to limit overfitting.

Although randomizing reduces this bias and widens the range
of iterations wherein a good estimate can be obtained, the iteration
that produces the best estimate of x within the decomposition path
depends on the sparsity and noise levels, which are unknown. In this
case, it is difficult to determine how many iterations are sufficient
to obtain a good estimate x̂. This translates into a stopping problem:
on one hand, the number of iterations must be large enough to obtain
a sufficient number of atoms that match the sparsity level and can
well represent x; on the other hand, additional iterations beyond the
sparsity level should be limited to minimize overfitting.

In this section, we present a novel approach to relax the stop-
ping problem. First, we adopt the randomized approach from [12]
with the exponential selection bias in (2) and the averaging of (4).
However, we also consider further reducing the bias towards larger

3Convergence is not affected; it always occurs after N iterations.
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projections, whereby we allow paths to further deviate from y in or-
der to avoid n and possibly further improve the estimate to x. Hence,
we replace the exponential bias with a linear bias so that

plin(j) ∝ c
∣∣∣dTj r(i)∣∣∣2 , c =

σ2
x

2σ2(σ2
x + σ)2

. (5)

In the remainder of this paper, we refer to ROMP, a more general
version of RandOMP that can potentially employ any type of bias
on random atom selections, summarized in Algorithm 1.

Algorithm 1 ROMP algorithm
procedure ROMP(D, y, Ti) . inputs: dictionary D, signal y,

iteration threshold Ti
α
(0)
` ← 0, for ` = 1, ..., L . initialize path solutions
r
(0)
` ← y, for ` = 1, ..., L . initialize path residuals
i← 1 . initialize iteration counter
while i < Ti do . loop for Ti iterations

d
(i)
` ← rand(dj ∈ D, j = 1, ...,M) . select atoms
α
(i)
` ← argminα∈Ri‖D(i)

` α− y‖22 . update solutions
r
(i)
` ← y −D(i)

` α
(i)
` . update residuals

i← i+ 1 . increment counter
end while
α̂← 1

L

∑L
`=1 α

(i)
` . average solution

x̂← Dα̂ . average estimate
end procedure

Second, we propose successive ROMP runs, referred to as
stages, using the obtained estimate from each stage as the decom-
position target for the next stage. By repeatedly stopping before N
iterations through several stages, we seek to successively discard
noise components from the estimate and, hence, the target. Conse-
quently, we relax the stopping problem by minimizing the level of
overfitting from additional iterations beyond the sparsity level.

Furthermore, we expect that the decomposition path may change
over subsequent stages, due to altering the target. If the discarded
components mainly contain noise, the algorithm may identify a bet-
ter set of atoms to match x, in which case we expect further de-
noising improvement by repeatedly moving the decomposition target
closer to x. This behaviour will be investigated in Section 4.

The proposed multi-stage ROMP (MS-ROMP) algorithm is de-
scribed as follows. The 1st stage target y(1) is set equal to the orig-
inal observation vector y. From (1), the decomposition of y(1) after
i iterations (and after averaging over all paths) can be written as

y(1) = D(i,1)α̂(i,1) + r(i,1), (6)

where r(i,1) is the resulting residual, and the estimate is x̂(1) =
D(i,1)α̂(i,1). At stage 2, ROMP is repeated with y(2) = x̂(1) as
the target, and a new estimate x̂(2) and residual r(i,2) are produced.

Generally, if α̂(i,n−1) is the ROMP solution after i iterations
(that is, the average solution over all paths) at the (n − 1)th stage,
then the target for the nth stage is set as

y(n) = D(i,n−1)α̂(i,n−1) = x̂(n−1), (7)

where x̂(n−1) is the estimate of x obtained after n − 1 stages. At

stage n, MS-ROMP approximates the minimization problem

α
(i,n)
` = arg min

α∈Ri
‖D(i,n)

` α− y(n)‖22 (8)

for each ROMP path ` = 1, ..., L, and the average solution α̂(i,n) is
obtained from (4). The dictionary D is the same for all stages, and
the solutions α̂ andα`, ` = 1, ..., L, are reset to zero at the beginning
of each stage. Finally, based on (6) and generalizing, the nth-stage
estimate can be written either in terms of the previous estimate, as in

x̂(n) = x̂(n−1) − r(i,n), (9)

or in terms of y(1) = y and the sum of the residuals, as in

x̂(n) = y −
n∑
k=1

r(i,k). (10)

The complete MS-ROMP algorithm is summarized in Algorithm 2.

Algorithm 2 MS-ROMP algorithm
procedure MS-ROMP(D, y, Ti, Ts)

. inputs: dictionary D, signal y,
iteration threshold Ti, stage threshold Ts

n← 1 . initialize stage counter
y(n) ← y . initialize target
while n ≤ Ts do . loop for Ts stages

x̂(n) ← ROMP(D, y(n), Ti) . ROMP procedure
n← n+ 1 . increment stage counter
y(n) ← x̂(n−1) . set new target

end while
x̂← x̂(n) . final estimate

end procedure

In each MS-ROMP stage n, the decomposition removes some
noise from the previous estimate x̂(n−1). Setting this as the new
target for the next stage permanently discards the noise in the previ-
ous residual, while the new decomposition produces a new residual.
Therefore, each stage subtracts a residual from the original obser-
vation y, as seen from (10). The error ‖x̂ − x‖22 can be iteratively
reduced if noisy components are removed from x̂(n), thus updating
the target to an estimate that is closer to x. After several stages, we
expect that MS-ROMP will converge to a good estimate x̂, hence al-
lowing us to stop at any iteration beyond the sparsity level. Critical
to MS-ROMP’s performance is whether the same number of atoms
is sufficient to represent x in subsequent stages. This number may
change if the signal component is distorted due to repeatedly altering
the target, thus requiring a different sparsity level to achieve a good
estimate. If stable, then MS-ROMP can repeat until the estimate
converges; otherwise, the x component in the target will be distorted
through the updates, and the estimate will diverge from x.

4. SIMULATION RESULTS

In this section, we evaluate MS-ROMP’s denoising performance by
comparing the estimate x̂ = Dα̂ to x through the estimate error
‖Dα̂ − x‖. We use the following set of parameters4: signal dimen-
sion N = 100, dictionary size M = 200, sparsity level k = 10,

4Parameter values chosen are based on the analysis in [14].
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Fig. 2. MS-ROMP estimate error to x per iteration with atoms cho-
sen exponentially at random.
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Fig. 3. MS-ROMP estimate error to x per iteration with atoms cho-
sen linearly at random.

noise standard deviation σ = 0.3, and number of paths L = 20. The
dictionary elements are generated using a standard normal distribu-
tion, and columns (atoms) are normalized. The signal x is formed
as a k-sparse linear combination of randomly selected atoms in D,
which implies an SNR of kσ2

x
Nσ2 = 10/9. We use exponential and

linear distributions to randomly select atoms as defined in (2) and
(5), respectively. ROMP paths are averaged according to (4), while
the overall MS-ROMP performance is averaged over 20 indepen-
dent trials. Targets (previous stage estimates) are obtained randomly
from the iteration range i ∈ {50, ..., N}, significantly higher than
the sparsity level to ensure a good representation of x. Simulation
results are presented by displaying MS-ROMP’s decomposition path
for several stages.

Fig. 2 shows MS-ROMP’s decomposition path over multiple
stages when using an exponential distribution, along with the decom-
position path of OMP and RandOMP, the latter being MS-ROMP’s
stage 1 in this case. Initially, each additional stage lowers the es-
timate error for the range of iterations after the ‘dip’ (i.e., the it-
erations that are overfitting) by removing noise components from
the new target when discarding the residual. However, after several
stages, the altered target causes MS-ROMP to select different atoms,
which causes the best-case (minimum error) estimate to deteriorate.
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Fig. 4. MS-ROMP minimum estimate error to x per stage.

We conjecture that the discarded residual also contains some com-
ponents of x, which are permanently lost; consequently, the estimate
error converges to a level higher than the original minimum error.

Conversely, MS-ROMP selects a similar set of atoms over mul-
tiple stages when using a linear distribution. Fig. 3 shows that the
estimate error is repeatedly improved, implying that stages here are
more effective in concentrating noise within the residual5. Since the
minimum error is further lowered, thus improving the best attainable
estimate, MS-ROMP converges to an estimate error that is lower than
the original minimum. This is also shown in Fig. 4 when comparing
the exponential and linear distributions by displaying the minimum
estimate error achieved by each stage. Although the linear case does
not match RandOMP’s minimum, MS-ROMP’s convergence allows
us to obtain a good estimate over any number of iterations beyond the
‘dip’ (after several stages). Therefore, the linear MS-ROMP algo-
rithm alleviates the stopping problem as the denoising performance
becomes insensitive to the number of iterations executed.

5. CONCLUSIONS

Randomized OMP-based algorithms can improve signal denoising
by greedily approximating a sparse signal decomposition using ran-
dom atom selections. In this paper, we described exponential and
linear distributions to randomly select atoms in high-noise situations.
To limit overfitting caused by additional iterations beyond the spar-
sity level, we proposed a novel multi-stage ROMP algorithm that
uses the estimate obtained from each stage as the decomposition tar-
get for the subsequent stage, iteratively discarding noise components
from the estimate. Using a linear distribution, the estimate error
converges towards the minimum error attained in the decomposition
path, thus allowing us to stop after any number of iterations beyond
the sparsity level to obtain a good estimate.

Further theoretical analysis is necessary to quantify the under-
lying differences between atom selection distributions and their re-
lation to the decomposition behaviour. Finally, mathematically re-
lating ROMP’s behaviour to the noise statistics can provide valuable
information to improve algorithm design.

5Performance degrades for higher SNR, as the decomposition path is too
slow and requires a higher projection bias, but also for fewer iterations per
stage, where the signal representation is not sufficient, thus losing the ‘dip’.
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