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ABSTRACT

This work discusses open-loop and closed-loop prediction from an

information-theoretic point-of-view. It is shown that the open-loop

predictor which minimizes the mean-squared prediction error differs

from the filter maximizing the information rate, but that this differ-

ence vanishes for high quantizer resolutions. The filter minimizing

the mean-squared reconstruction error performs worse for all quan-

tizer resolutions. For the closed-loop predictor, which is shown to

be superior only at low quantizer resolutions, the filters maximizing

the information rate and minimizing the mean-squared reconstruc-

tion error coincide.

We illustrate these results with a simple example and discuss

similarities with the information-theoretic aspects of principal com-

ponents analysis and anti-aliasing filtering. Furthermore, we briefly

discuss the classical Wiener filter followed by a quantizer.

Index Terms— Information rate, quantization, prediction,

Wiener filter

1. INTRODUCTION

A stable, causal linear filter cannot change the information content

of a signal — this result is as old as information theory [1] and made

its way into textbooks on probability theory, e.g, [2, p. 663]. It has

not made its way, unfortunately, into textbooks on signal processing,

in which linear filters and energetic measures (such as the mean-

squared error) are still regarded as the most common tools for pro-

cessing and measuring information. Only recently, signal processing

has incorporated information-theoretic methods for its purpose: New

approaches to adaptive filter design [3] are just one example.

The problem of this work – quantization – is well-treated in the

literature, both from an energetic and an information-theoretic per-

spective. While most commonly the quantizer is designed to min-

imize the mean-squared reconstruction error (MSRE) [4], also the

mutual information rate has been considered for quantizer design [5,

6]. Linear pre-processing prior to quantization has been investigated,

e.g., in [7]. Joint optimization w.r.t. both MSRE and information rate

is considered in rate-distortion theory [8, Ch. 10], [9–11].

What, to the best of our knowledge, is currently lacking is an

information-theoretic analysis of energetic designs: For the specific

problem of filtering prior to quantization, in which cases is a predic-

tion filter minimizing some error variance optimal also in terms of

information rate? We answer this question by highlighting similari-

ties and differences between energetic and information-theoretic cost

functions for linear pre-processing systems in Section 2. Then, for

the specific problem of quantization, we determine the information-

maximizing prefilters both for open- and closed-loop schemes, and

compare the results to the energetic optima (Section 3). After briefly

considering the restriction to FIR filters in Section 4, we illustrate

our results with numerical examples.

2. ENERGETIC VS. INFORMATION-THEORETIC COST

FUNCTIONS

An elementary result from information theory states that informa-

tion, once lost in a nonlinear deterministic system, cannot be recov-

ered [8, Ch. 2.8]. However, while post-processing cannot prevent

information loss, pre-processing by, e.g., linear filtering, can. As

a consequence, information-theoretic filter design only requires to

maximize the information rate between the signal source and the

output of the nonlinear device – the quantizer, in this case. It is not

necessary to provide a method for reconstructing the source signal1,

as it usually is for energetic measures like the MSRE. In this sense,

information-theoretic cost functions have an inherent advantage over

energetic ones.

Regarding similarities and differences between these cost func-

tions, we would like to start with a particularly intuitive example:

that of principal components analysis (PCA) prior to dimensionality

reduction. It is well-known that PCA preserves the subspace with

the largest variance and, hence, minimizes the reconstruction error

variance (e.g. [12]). The information-theoretic analysis is somewhat

more difficult: Given that the input vector has a continuous joint

distribution, an infinite amount of information is both lost and pre-

served2, regardless which (full-rank) matrix is used for rotating or

translating the vector prior to dimensionality reduction. Even more

surprisingly, also the percentage of information lost or preserved

is independent from the choice of the transformation matrix, as we

made precise recently [13]: PCA cannot reduce the information lost

in dimensionality reduction.

Things look totally different if the input vector is modeled as

the sum of a signal and an independent, identically distributed (iid)

noise vector, where the information relevant to the information sink

is contained in the signal vector only. In case both signal and noise

are Gaussian, Linsker showed that PCA maximizes the information

transfer [14]. For Gaussian noise but a non-Gaussian signal it can

be shown that PCA at least minimizes an upper bound on the in-

formation lost in dimensionality reduction [12, 15, 16]. We want to

stress, however, that these optimality results hold only under spe-

cific assumptions on the signal model; in more general cases, PCA

completely fails in information-theoretic terms [16, Sec. VI.C].

1In particular, we argue that in some cases reconstruction is not even nec-
essary in practice: For example, an appropriately designed automatic speech
recognition system could, theoretically, work equally well on the output of
the transmission channel as on the reconstructed signal.

2A continuous-valued random variable is described by an infinite number
of bits.
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Fig. 1: Quantization system consisting of a linear filter H and an

entropy-R constrained uniform quantizer Q.

A very similar picture appears for anti-aliasing filtering prior to

downsampling of continuous-valued, discrete-time, non-bandlimited

processes. The filter maximizing the energy transfer and minimiz-

ing the MSRE is known to be an aliasing-free energy compaction

filter, whose passband depends on the power spectral density of the

input process [17, 18]. From an information-theoretic perspective

the downsampled signal shares infinite information with the input

process, and at the same time suffers from infinite information loss.

Specifically, the percentage of information lost during decimation is

independent of the filter [19]: It is either lost in the downsampler or

in the filter (e.g., if the filter is an ideal low-pass).

This counter-intuitivity can again be resolved by assuming that

the input process is a signal process superimposed by noise. In case

both processes are Gaussian and the noise is white, the energy com-

paction filter from [17, 18] maximizes the information rate over the

downsampler. In case the signal process is non-Gaussian, at least

an upper bound on the information loss rate can be minimized [19].

Again, optimality of linear filtering strongly depends on the assump-

tions of the signal model.

Finally, consider the problem of this work: filtering prior to

quantization as illustrated in Fig. 1. While the amount of information

lost in the quantizer is still infinite (even 100%, cf. [13]), the infor-

mation rate between the source and the quantizer output is finite this

time. It is, therefore, possible to maximize it by adapting the fil-

ter accordingly. We will stick to our previous modeling assumption

and assume that the source process is Gaussian. Modeling also the

quantization noise as a white Gaussian process not only simplifies

the analysis but also provides a lower bound on the information rate

for high-resolution quantizers.

The optimality results we will show in the following depend

again strongly on the validity of the signal model. Specifically, one

cannot expect that prefiltering a non-Gaussian process with non-

linear dependence structure will always increase the information rate

at the quantizer output.

3. OPTIMAL PREFILTERS FOR QUANTIZATION

We now investigate the effect of prefiltering on the information rate

over a uniform quantizer (see Fig. 1). We assume the quantizer is

entropy-constrained and satisfies the high-rate assumption, i.e., that

it can be modeled by an uncorrelated, white noise source with a vari-

ance proportional to the variance σ2

X̃
of X̃, cf. [20].

It can be shown using elementary information theory that the

information rate I (X;Y) equals the entropy rate H (Y) of the

discrete-valued output process. For a fixed marginal distribution of

Y (or X̃, respectively), the entropy rate is maximized if the process

is a sequence of iid random variables; in the Gaussian case, the

maximum is achieved if X̃ is white. This suggests that the optimal

filter H is a linear predictor, a whitening filter.

To make this statement precise, we model the quantizer as an

additive white Gaussian noise channel. While this assumption is

uncommon, it holds for vector quantizers, cf. [11], and provides a

lower bound on the information rate for a Gaussian input process X

for high quantizer resolutions. Thus, let X be a stationary Gaus-

sian process with positive power spectral density (PSD) SX(eθ)

and variance σ2

X . Note that the PSDs of X̃ and Y are given by

SX̃(eθ) = SX(eθ)|H(eθ)|2 and SY (eθ) = SX̃(eθ) + σ2

X̃
γ, re-

spectively, where γ = 1/(e2R − 1) and R is the entropy constraint

of the quantizer. The information rate between X and Y evaluates

to [21]

I (X;Y) =
1

4π

∫ π

−π

ln

(

1 +
SX̃(eθ)

σ2

X̃
γ

)

dθ. (1)

Via Jensen’s inequality, this expression can be bounded from above

by R, with equality if and only if the argument of the logarithm is

constant. In other words, the maximum information rate is achieved

if H is a perfect whitening filter, or an infinite-order linear open-

loop predictor. Note that such a linear predictor not only ensures

that SX̃(eθ) is constant, but also that the prediction error σ2
e =

σ2

X̃
is minimized. Then, SX̃(eθ) = σ2

X̃
= σ2

∞, where σ2
∞ is the

prediction error of the infinite-order predictor, or the entropy power

of X.

This result is interesting when compared to other aspects of lin-

ear, open-loop prediction. Specifically, assume that the quantizer

output Y is filtered by H−1, and that the resulting process X̂ shall

approximate X. When investigating the MSRE or the signal-to-

quantization-noise ratio, [22, Ch. 8] shows that the infinite-order

linear predictor cannot improve these two quantities compared to

omitting the filter (H ≡ 1). If the MSRE is taken as cost function,

the optimal filter turns out to be half-whitening [23]. Naturally, this

half-whitening filter performs sub-optimally in terms of the informa-

tion rate, since the input to the quantizer is not white. Consequently,

with this open-loop prediction scheme, energetic and information-

theoretic cost functions in general cannot be optimized simultane-

ously. Hence, one has to take care in choosing the cost function

appropriate for the application.

The question remains whether it is possible to meet both de-

sign goals with closed-loop prediction, i.e., when the predictor oper-

ates on the quantized signal. To this end, recall that a causal, stable

linear filter H−1 does not influence the information rate, i.e., that

I (X;Y) = I (X; X̂) if X̂ is obtained by filtering Y with H−1.

To calculate the information rate for closed-loop prediction, we can

thus apply the error identity stating that X̂ = X + Q, where Q is

the white Gaussian quantization noise process. Since the quantizer is

now in the prediction loop, the prediction is based on noisy samples

and the prediction error σ2
e satisfies σ2

e > σ2

X̃
, where the difference

becomes small for high quantizer resolutions [23, pp. 1505]. Conse-

quently, the variance of Q is σ2
eγ and the information rate is

I (X; X̂) =
1

4π

∫ π

−π

ln

(

1 +
SX(eθ)

σ2
eγ

)

dθ (2)

where σ2
e is the only term that depends on the filter H . Minimizing

the prediction error σ2
e hence not only maximizes the information

rate, but also minimizes the MSRE.

That closed-loop prediction is superior to open-loop prediction

in terms of MSRE is well-known [22, 23]; but also its information-

theoretic properties have been investigated. The focus of the rele-

vant works, however, is mainly on comparing it to the rate-distortion

function, a theoretical lower bound on the number of bits one must

send over a channel to reconstruct the input process with a given

distortion (see, e.g., [8, Ch. 10]). It is known, for example, that

an autoregressive Gaussian process and its innovation process have

the same MSRE rate-distortion function. Kim and Berger showed
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that open-loop prediction cannot achieve this function [10] and they

quantified the additional rate necessary to achieve the desired dis-

tortion for first-order autoregressive processes [9]. Quite contrar-

ily, with proper pre- and post-filtering, the rate-distortion function is

achievable by closed-loop prediction [11].

4. FIR PREFILTERS FOR QUANTIZATION

While the case is relatively simple for optimal infinite-order filters,

the problem is less clear for finite impulse response (FIR) filters.

Specifically, is the filter minimizing the prediction error also optimal

in terms of information rates? While (2) gives an affirmative answer

for the closed-loop predictor, for open-loop prediction the optimal

solution will be different (except in the important case where X is

an autoregressive process of the same or smaller order as the filter).

A non-trivial exception is the case of a high entropy constraint

R, which leads to an emphasis of the fraction SX̃(eθ)/σ2

X̃
in the

argument of the logarithm in (1), thus

I (X;Y) ≈
1

4π

∫ π

−π

ln

(

SX̃(eθ)

σ2

X̃
γ

)

dθ =
1

2
ln

(

σ2
∞

σ2

X̃
γ

)

. (3)

Maximizing the information rate for large R is then equivalent to

minimizing σ2

X̃
, the prediction error.

This result is interesting from a practical point-of-view: While

the FIR filter minimizing the prediction error variance is obtained

from the autocorrelation properties of X [24, Ch. 3], the filter

maximizing the information rate involves nonlinear optimization.

Closed-form solutions are, if at all, only available for particularly

simple examples. Above argumentation shows that, at least for

high-resolution quantization, nonlinear optimization will not lead

to significant performance gains compared to the closed-form ener-

getic optima. Hence, while in general the energetically optimal FIR

filter is different from the information-theoretic solution, in some

cases design based on energetic cost functions can be justified also

in information-theoretic terms.

5. EXAMPLES

We illustrate our results with a simple example: Let X be a first-

order moving-average process with the process generating difference

equation Xn = Wn + Wn−1, where W is a unit-variance, zero-

mean, white Gaussian innovation process. The PSD of X is thus

SX(eθ) = 4 cos2(θ/2), and σ2

X = 2.

Assume further that H is either first or second order, i.e., its

impulse response in vector notation is either h1 = [h0, h1]
T or

h2 = [h0, h1, h2]
T . The filter coefficients minimizing the mean-

squared prediction error (PE) are [24, Ch. 3]:

h
1

PE = [1, −1/2]T with σ2

1 = 1.5 (4a)

and

h
2

PE = [1, −2/3, 1/3]T with σ2

2 = 1.333 (4b)

where σ2

L denotes the PE of the L-th order predictor. Clearly, for

the infinite-order predictor we have σ2
∞ = 1, the variance of the

innovation process.

We computed the information rates for first- and second-order

open-loop predictors designed with different cost functions: max-

imizing information rate, minimizing MSRE, and minimizing PE.

We also computed the information rate of the closed-loop predictor

according to (2). The filter coefficients were chosen to minimize the

PE σ2
e , hence are optimal for each of the three cost functions.

0.2

0.4

−0.2

−0.4

−0.6

−0.8

1 2 3 4 5 6 R

hi

OL, h1,Info OL, {h1, h2}Info
CL, h1 CL, {h1, h2}

Fig. 2: Filter coefficients maximizing the information rate as a func-

tion of the entropy constraint R.

The quantizer entropy constraint was varied from R = 0.1 to

R = 6. For each value of R, the optimal filter coefficients were

obtained numerically3; w.l.o.g., the first coefficient was set to unity,

since a simple gain has no influence on the information rate (the

quantization noise variance depends on the quantizer input variance).

Fig. 2 shows the coefficients as a function of R. It can be seen

that for high rates the information-theoretic optimum approaches the

PE-optimal predictor coefficients in (4). Thus, for large R, min-

imizing the prediction error also maximizes the information rate.

The coefficients for the closed-loop predictor also approach the PE-

optimal coefficients of the open-loop predictor for large R, since

then σ2
e ≈ σ2

X̃
. For small R, the coefficients are close to zero to

reduce the noise gain of the prediction filter.

Fig. 3 shows the difference between the entropy constraint R
and the information rate I (X;Y) for first- and second-order filters

designed according to different cost functions. Second-order filters

clearly outperform the first-order filters, and for the infinite-order

open-loop predictors h∞
Info and h∞

PE one gets R − I (X;Y) ≡ 0.

One can observe that the difference in information rates between

the PE and the information-theoretic optimum is negligible. This is

due to the filter coefficients being close to the PE solution even for

small entropy constraints, and suggests that the energetic solution

is a good approximation of the information-theoretic one. In con-

trary to that, designing H in Fig. 1 in order to minimize the MSRE,

hMSRE, leads to a performance loss for all rates R. Finally, it can be

seen that while closed-loop prediction outperforms open-loop pre-

diction, it does not provide significant performance gains for large

R: Compare (1) and (2) with small γ, and consider that the entropy

powers of SX(eθ) and of SX̃(eθ) are both equal to σ2
∞.

We present an additional example where X is the sum of a Gaus-

sian signal process S with PSD SS(e
θ) = 4 cos2(θ/2) and an in-

dependent, white Gaussian noise process N with variance σ2

N . We

design a first-order filter H with impulse response vector h1 =
[h0, h1]

T in order to maximize the information rate between S and

the quantizer output, I (S;Y), and compare the solution with the fil-

ter minimizing the variance of S−Y. The latter filter can be shown

to have coefficients [24, Ch. 2]

h
1

Wiener =
1

(1 + γ)(σ4

N + 4σ2

N + 3)
[3 + 2σ2

N , σ2

N ]T . (5)

Note that for R → ∞ and γ → 0 the coefficient vector h1

Wiener

corresponds to the Wiener solution, hence the subscript. The Wiener

3Numerical results have been obtained with Wolfram Mathematica R© 8;
the notebooks and produced .dat-files for all figures are available for down-
load at http://www.spsc.tugraz.at/biblio/geiger99982844.
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(a) First-Order Filters
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Fig. 3: Difference between entropy constraint R and information

rate I (X;Y) in nats for different filters H for open- (OL) and

closed-loop (CL) predictors. Note that the rates for hInfo and hPE

almost coincide.

filter would also be optimal if the quantization noise variance would

not depend on the quantizer input.

To maximize the relevant information rate I (S;Y), we can

again normalize the first filter coefficient to unity. Hence, with

H(eθ) being the frequency response of the FIR filter h1 = [1, h]T ,

we strive to maximize

I (S;Y) =
1

4π

∫ π

−π

ln

(

1 +
SS(e

θ)|H(eθ)|2

σ2

N |H(eθ)|2 + γσ2

X̃

)

dθ. (6)

Note that for σ2

N = 0 this degenerates to (1). For γ → 0 filtering

becomes futile, because in this case no quantizer is present.

We optimized this cost function numerically, and the results for

the filter coefficient h and the resulting information rate are shown

in Fig. 4. The variance of the noise process N was varied in σ2

N =
{0.001, 0.1, 10}. It can be seen from Fig. 4a, that for large entropy

constraints R the information rates saturate, a consequence of the

noise added at the input of the quantizer. This saturation naturally

occurs at a lower rate I (S;Y) if the variance σ2

N is large. More-

over, while for small noise variances there is a significant difference

between the Wiener filter and the information-maximizing one, this

difference diminishes for large noise variances – the bottleneck is

now the noise source prior to quantization, rather than the quantizer.

Looking at the coefficient h optimal in the information-theoretic

sense in Fig. 4b, one can see that the dependence on the entropy con-

straint R is now much more emphasized. First of all, for small noise

variances, the filter is still predicting due to the negativity of h. How-

ever, h is now larger (i.e., closer to zero) compared to the coefficient

in Fig. 2. The reason is that maximizing (6) involves three conflict-

ing goals: equalizing SS(e
θ), minimizing σ2

N |H(eθ)|2, and mini-

mizing the quantizer input variance σ2

X̃
. For small R, the last goal

1

2

3

1 2 3 4 5 6 R

I (S;Y)

h1

Info

h1

Wiener

σ2

N = 0.001

σ2

N = 0.1

σ2

N = 10

(a) Information Rates in nats.

0.1

−0.1

−0.2

−0.3

−0.4

−0.5

1 2 3 4 5 6 R

h
σ2

N = 10

σ2

N = 0.1

σ2

N = 0.001

(b) Filter Coefficient h

Fig. 4: Analysis of the signal-plus-noise example. (a) shows the

information rate as a function of the entropy constraint R for both the

Wiener filter and the information-theoretically optimal filter, while

(b) shows the filter coefficient of the latter.

is emphasized, while for large σ2

N minimizing σ2

N |H(eθ)|2 is im-

portant. This is also evident from Fig. 4b for σ2

N = 10. Here, not

only is the coefficient close to zero, but it is also positive: In addi-

tion to having a small noise gain, the filter also averages noise and

emphasizes parts of the input spectrum SS(e
θ).

This example shows that, in general, energetic filter design is

sub-optimal from an information-theoretic point-of-view. Being in-

formed about those special cases in which these two cost functions

coincide is of great practical importance, since energetic design of-

ten admits closed-form solutions, while information-theoretic cost

functions require nonlinear optimization. Investigations, such as the

present one, can hence justify – or reject – simplified design proce-

dures from an information-theoretic perspective.

6. CONCLUSION

In this work, we highlighted the importance of information-theoretic

cost functions: Information is inherently different from energy, thus

a filter designed according to an energetic cost function generally

fails to maximize information rates. Whether this is beneficial or not

strongly depends on the application; in many cases, however, one

wants to transmit information.

We then justified energetically optimal open-loop prediction

from an information-theoretic point-of-view: While in general the

filter maximizing the information rate over the quantizer is differ-

ent from the filter minimizing the prediction error, the difference

becomes negligible for high-resolution quantizers. Moreover, in

information-theoretic terms, the performance of the open-loop pre-

dictor is similar to the closed-loop predictor’s for high quantizer

resolutions.
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