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ABSTRACT
Recovering static signals from compressed measurements
is an important problem that has been extensively studied
in modern signal processing. However, only recently have
methods been proposed to tackle the problem of recovering
a time-varying sequence from streaming online compressed
measurements. In this paper, we study the capacity of the
standard iterative soft-thresholding algorithm (ISTA) to per-
form this task in real-time. In previous work, ISTA has been
shown to recover static sparse signals. The present paper
demonstrates its ability to perform this recovery online in
the dynamical setting where measurements are constantly
streaming. Our analysis shows that the `2-distance between
the output and the target signal decays according to a linear
rate, and is supported by simulations on synthetic and real
data.

Index Terms— Iterative Soft-Thresholding, sparse recov-
ery, Compressed Sensing, time-varying signal

1. INTRODUCTION

Recent work in signal processing, in particular in the field
of Compressed Sensing (CS), has developed powerful mathe-
matical tools to acquire large signals at much lower rates than
the traditional Nyquist rate [1]. In the static setting, noisy lin-
ear measurements y ∈ RM of a sparse signal a† ∈ RN are
obtained via a measurement matrix Φ, i.e. y = Φa† + ε with
M � N . If the signal is S-sparse, meaning that only S coef-
ficients in a† are non-zero, a well-studied approach is to solve
the optimization program

â† = arg min
a

1

2
‖y − Φa‖22 + λ ‖a‖1. (1)

If the target is sufficiently sparse and the measurement matrix
satisfies some properties, the minimum of this optimization
provably recovers the target signal accurately and robustly
with respect to noise [2]. Unfortunately, the above optimiza-
tion is non-smooth and computing its optimal solution is com-
putationally expensive. A large amount of work has been put
to develop efficient algorithms that solve or approximately
solve this problem.
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One of the well-known approaches to sparse signal recov-
ery is the iterative soft-tresholding algorithm (ISTA) [3]. Its
simple update rule makes it intuitive and easy to implement.
In addition, ISTA provably minimizes the `1-minimization (or
LASSO) objective in (1), which is known to yield strong re-
covery guarantees. Although ISTA tends to converge slowly,
many state-of-the-art solvers are slight variations of the stan-
dard ISTA [4–7].

In this paper, we show the potential of ISTA to perform
online recovery of time-varying signals. In our setting, the
ISTA iterations are performed as the measurements are re-
ceived without waiting for convergence, overcoming the is-
sue of slow convergence. Our analysis proves that, despite
not letting the algorithm converge, the output is able to track
the target signal over time. We prove that the `2-distance de-
creases at a linear rate and tends to a minimum that is intuitive
and essentially optimal. Our analysis is supported by simula-
tion results on both synthetic and real data.

2. BACKGROUND

2.1. Iterative Soft-Thresholding Algorithm

The approach we are interested in is the well-known itera-
tive soft-thresholding algorithm (ISTA). Its step rule can be
viewed as a generalized gradient step and its kth iterate a(k) ∈
RN is defined by1

a(k + 1) = Tλ
(
a(k) + τ

(
ΦT (y − Φa(k))

))
, (2)

where Tλ(·) is the soft-thresholding function operating entry-
wise and defined by

Tλ(xn) = max {|xn| − λ, 0} sign(xn). (3)

The constant τ represents the step size of the gradient step,
which is usually required to be in the interval

(
0,
∥∥ΦTΦ

∥∥−1)
to ensure convergence. Several papers have shown that this
algorithm converges to the solution to (1) as k goes to infinity
from any initial point a(0) with linear rate [8, 9].

1We indicate the iterate number k in parenthesis, similar to a time index,
and the nth entry as a subscript: an(k).
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2.2. Related work

Encouraged by the positive results for static signals recov-
ery, recent papers have proposed approaches that apply CS
techniques to streaming signals. In [10–12], extensions of the
classic Kalman filter that take sparsity into account are de-
veloped. In [13, 14], a Bayesian inference approach is used,
where a probabilistic model of the target’s dynamics needs to
be adjusted. In [15, 16], an optimization program is set-up to
take into account the time-correlation between samples and
the recovery is performed blockwise. The methods presented
in [17–21] are iterative schemes combined with techniques
to reduce complexity. While they show good performance in
practice, these approaches lack theoretical guarantees for the
convergence and accuracy, or only present theoretical results
in the static setting. In [22], a proof of convergence is given,
but there is no accuracy result and it is not clear if the condi-
tions for convergence apply when the target is time-varying.

In our analysis, no a priori information on the signal’s dy-
namics is required. The standard ISTA is studied when the
input contains measurements of a time-varying signal, and
no convergence criterion is imposed before moving to the
next time instance. As a consequence, the number of iter-
ations performed by ISTA for each measurement is entirely
dictated by the sampling rate. Our results show that even in
this iteration-limited setting, ISTA is able to track the under-
lying time-varying signal, and gets closer in the `2-distance as
the number of iterations increases. While other papers, such
as [12] had pointed out that limiting the number of iterations
still yields good convergence in practice, to the best of our
knowledge no theoretical analysis has been performed.

3. TIME-VARYING SIGNAL RECOVERY

3.1. Signal and Measurement Model

We consider the problem where the target a† varies with time.
A new measurement is received every P th ISTA iterate:

y(kP ) = Φa†(kP ) + ε(kP ), ∀k ≥ 0 (4)

where the noise vector ε(kP ) may also vary with time. As a
consequence, the ISTA lth iterate is:

u(l + 1) = a(l) + τ
(
ΦT (y(l)− Φa(l))

)
a(l + l) = Tλ(u(l + l))

,∀l ≥ 0 (5)

For iterates l of the form l = kP + i, with i = 0, . . . , P − 1,
the target signal a†(kP + i) and the measurements y(kP + i)
are treated as constant signals, while the differences between
consecutive samples are assumed to be bounded:

a†(kP + i) = a†(kP ), ∀k ≥ 0,∀i = 0, . . . , P − 1, (6)∥∥a†(kP )− a†(kP − 1)
∥∥
2
≤ µ, ∀k ≥ 0. (7)

We also assume that the energy in the target is bounded:∥∥a†(l)∥∥
2
≤ η, ∀l ≥ 0, (8)

We introduce the extra variable u(l) above to simplify no-
tations in the proof of the main result. Note that because the
measurement vector y(l) changes every P iterations, if P is
small, ISTA never converges to the minimum of (1). This
approach is of great interest for scenarios where the measure-
ments are streaming at very high rates or computational re-
sources are limited.

3.2. Main Result

The following theorem shows that the number of non-zero
elements in the output remains bounded. It also provides an
expression for the evolution of the `2-distance between the
output and the target signal.

Theorem 1. Assume that the dictionary Φ and the gradient
step size τ in (5) satisfy

1 ≤
∥∥ΦTΦ

∥∥ < 1/τ, (9)

where ‖·‖ is the operator norm. Define c =
∥∥τΦTΦ− I

∥∥ < 1.
If the target signal satisfies conditions (7) and (8), the initial
point a(0) contains less than q active nodes and the following
condition holds for some q > 0

max
{
‖u(0)‖2 , cλ

√
q
}

+ η + σ ≤ λ√q, (10)

then

1. the output a(l) never contains more than q active nodes
for all l ≥ 0; and

2. the `2-distance between the output and the target signal
satisfies ∀l ≥ 0, letting i = (l mod P ) (i.e., ∃k ≥ 0
such that l = kP + i, with 0 ≤ i ≤ P − 1)∥∥a(l + 1)− a†(l)

∥∥
2
≤ cl

(∥∥a(1)− a†(0)
∥∥
2
−W

)
+

ci+1

1− cP
µ+D, (11)

where

D = (1− c)−1 (λ
√
q + σ) , (12)

W =
cµ

1− cP
+D. (13)

This theorem shows that every P th iteration, the `2-
distance between the output a(kP ) and the target signal
a†(kP − 1) remains bounded and converges as k goes to
infinity towards

D +
cP

1− cP
µ = (1− c)−1 (λ

√
q + σ) ,+

cP

1− cP
µ
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with a linear rate of convergence. Note that this final value
is essentially optimal. The first term (1 − c)−1

(
λ
√
q + σ

)
corresponds to the error we expect from solving (1). To-
gether with the bound (10), they resemble the terms of Corol-
lary 5.1 in [23] for the static case. The additional term
cP (1− cP )−1µ behaves like µ/P and corresponds to the
error we expect from having a time-varying input. The larger
the variations in the target, the larger µ is, which corresponds
to a more difficult signal to track and a larger error. More-
over, the slower the target varies, the larger P can be, and
as expected, the smaller the final error is. When P goes to
infinity, this additional term disappears.

3.3. Proof

Proof. First, we show by induction on l that ‖u(l)‖2 ≤ λ
√
q.

Note that if ‖u(l)‖2 ≤ λ
√
q, then no more than q entries in

u(l) have absolute value greater than λ, so no more than q
entries are non-zero in a(l) = Tλ(u(l)). Thus, this induction
proves 1. of the theorem.

We will use the fact that (9) implies c =
∥∥τΦTΦ− I

∥∥ < 1

and τ ‖Φ‖ ≤ 1/
√
‖ΦTΦ‖ ≤ 1. Also note that if ‖u(l)‖2 ≤

λ
√
q, then (3) implies that ‖a(l)‖2 ≤ ‖u(l)‖2 ≤ λ

√
q and

‖u(l)− a(l)‖2 ≤ ‖u(l)‖2 ≤ λ
√
q.

At iteration l = 0, (10) implies that ‖u(0)‖2 ≤ λ
√
q.

Now, assume that for some l ≥ 0, ‖u(l)‖2 ≤ λ
√
q.

‖u(l + 1)‖2 =
∥∥a(l) + τΦT (y(l)− Φa(l))

∥∥
2

=
∥∥− (τΦTΦ− I

)
a(l)

+ τΦTΦa†(l) + τΦT ε(l)
∥∥
2

≤
∥∥τΦTΦ− I

∥∥ ‖a(l)‖2
+ τ

∥∥ΦTΦ
∥∥∥∥a†(l)∥∥

2
+ τ ‖Φ‖σ

≤ c ‖a(l)‖2 +
∥∥a†(l)∥∥

2
+ σ

≤ cλ√q + η + σ ≤ λ√q. (by (10))

So the property holds at l + 1 and the induction is proven.
We now show by induction on l that (11) holds. At l = 0,

the property obviously holds. Assume that it holds for some
l ≥ 0. There exist a unique k ≥ 0 and a unique 0 ≤ i ≤ P−1
such that l = kP + i. Applying 1., we compute∥∥a(l + 2)− a†(l + 1)

∥∥
2

≤ ‖a(l + 2)− u(l + 2)‖2 +
∥∥u(l + 2)− a†(l + 1)

∥∥
2

≤ ‖u(l + 2)‖2 +
∥∥u(l + 2)− a†(l + 1)

∥∥
2

= λ
√
q +

∥∥τΦT ε(l)

+
(
τΦTΦ− I

) (
a†(l + 1)− a(l + 1)

)∥∥
2

≤ λ√q + σ

+c
∥∥a†(l + 1)− a†(l)

∥∥
2

+ c
∥∥a(l + 1)− a†(l)

∥∥
2
.

There are two scenarios: i = P − 1 or 0 ≤ i ≤ P − 2.

First case: When i = P − 1, l = (k + 1)P − 1 and
(7) yields

∥∥a†(l + 1)− a†(l)
∥∥
2
≤ µ. So, using the induction

hypothesis (11) at l gives∥∥a(l + 2)− a†(l + 1)
∥∥
2

≤ c
∥∥a(l + 1)− a†(l)

∥∥
2

+ cµ+ λ
√
q + σ

≤ c
(
cl
(∥∥a(1)− a†(0)

∥∥
2
−W

)
+

cP

1− cP
µ+D

)
+λ
√
q + σ + cµ

≤ cl+1
[∥∥a(1)− a†(0)

∥∥
2
−W

]
+
cP+1

1− cP
µ+ cD + λ

√
q + σ + cµ

≤ cl+1
[∥∥a(1)− a†(0)

∥∥
2
−W

]
+

c

1− cP
µ+D.

So the induction hypothesis holds for l + 1 = (k + 1)P .
Second case: When 0 ≤ i ≤ P − 2, (6) yields∥∥a(l + 2)− a†(l + 1)

∥∥
2

≤ c
∥∥a(l + 1)− a†(l)

∥∥
2

+ λ
√
q + σ

≤ c
(
cl
(∥∥a(1)− a†(0)

∥∥
2
−W

)
+

ci+1

1− cP
µ+D

)
+λ
√
q + σ

≤ cl+1
[∥∥a(1)− a†(0)

∥∥
2
−W

]
+

ci+2

1− cP
µ+ cD + λ

√
q + σ

≤ cl+1
[∥∥a(1)− a†(0)

∥∥
2
−W ∗

]
+

ci+2

1− cP
µ+D.

Since l + 1 = kP + (i + 1), with 1 ≤ i + 1 ≤ P − 1,
this proves the induction hypothesis in the second case and
finishes the proof.

4. SIMULATIONS

4.1. Synthetic data

We start by testing the approach on synthetic data. A sparse
vector a†(0) of length N = 512 with S = 40 non-zero lo-
cations chosen at random by drawing 40 amplitudes from a
normal Gaussian distribution and normalizing them to have
norm 1. Then, we generate 99 consecutive time samples of
a†(k) as follows:

a†(k + 1) =

√
η2 − µ2

η2
a†(k) +

µ√
S
v(k),

where v(k) is a vector with same sparsity pattern as a† and
amplitudes drawn from a standard Gaussian distribution. We
pick η = 1 and µ = 0.5. Each resulting sample a†(k)
has energy equal to η and innovation with energy propor-
tional to µ in expectation. The measurement matrix Φ, of
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Fig. 1. `2-distance between the target and the output at the P th

ISTA iterations for 5 values of P averaged over 1000 trials.

Fig. 2. Ratio of the maximum number of non-zero elements
q over the sparsity level S for several values of λ and S aver-
aged over 100 trials.

size 256 × 512, is filled with random normal Gaussian vari-
ables and its columns are normalized to 1. Gaussian white
noise with standard deviation 0.3

∥∥Φa†(0)
∥∥
2
/
√
M is added

to the measurements, which corresponds to a moderate level
of noise. We run ISTA in (3.1) for 5 different values of P , and
average over 1000 such trials. The step size τ is chosen equal
to 1/

∥∥ΦTΦ
∥∥, and the threshold is λ = 0.4. In Fig.1, we

plot the `2-error
∥∥a(kP )− a†(kP − 1)

∥∥
2
. We observe that

the curves tend to a final value that matches the behavior of
cP
(
1− cP

)−1
predicted by the theorem as k goes to infinity.

Next, we vary the threshold λ and the sparsity level S, and
generate for each pair 10 time samples of a†(k) and associ-
ated measurements y(k) in the same fashion as above. We run
ISTA for P = 10 iterations per measurement. In Fig.2, we
plot the average over 100 such trials of the ratio of the maxi-
mum number of non-zero elements q in a(l) over the sparsity
level S. The plot shows that the maximum number of non-
zero elements remains small (q is mostly contained between
1S and 10S), which matches the theorem’s prediction.

4.2. Real data

We follow the work in [24], where an efficient approach
to image acquisition and recovery, called “compressive
imaging”, is developed. Since natural images are sparse
in wavelets, the matrix Φ used is Φ = AB, where A con-

(a) Mean rMSE (b) Mean CPU time (s)

Fig. 3. rMSE and CPU time for each random 100 consecu-
tive frames of the recovered foreman video sequence wavelet
coefficients averaged over 50 trials.

sists of M = 0.25N random rows of a noiselet matrix and
B is a dual-tree discrete wavelet transform (DT-DWT) [25].
We compare the performance of ISTA against TFOCS, a
state-of-the-art LASSO solver applied independently on each
frame [26], BPDN-DF that adds additional time-dependent
regularization between frames, as well as RWL1-DF which
additionally performs reweighting at each iteration [11].
On Fig.3, the regularized mean-squared error, defined by

rMSE(k) =

∥∥a(k)− a†(k)
∥∥
2

‖a†(k)‖2
, and the CPU time per

frame, averaged over 50 random sequences of 100 frames
of the foreman video 2, are plotted. The results show that for
both P = 3 and P = 10, the gain in time of ISTA is signifi-
cant. For P = 10, the rMSE is similar to the one for BPDN
and BPDN-DF. The rMSE for RWL1-DF is much lower, due
to the additional reweighting steps, however, the CPU time
for this method is much larger than the other four, making
it impractical for applications where the measurements are
streaming at very high rates.

5. CONCLUSION

In this paper, we showed that the standard ISTA can be used as
an online solver to recover time-varying signals from stream-
ing compressed measurements. Our analysis provides an an-
alytic expression for the `2-distance between the ISTA iterate
and the target signal that depends on the number of time sam-
ples as well as the number of iterations performed per mea-
surement. This analysis is particularly useful in the scenario
where the measurements are streaming at very high rates and
only a few iterations can be performed. Simulations showed
that the theoretical behavior is followed in practice, and that
the method is applicable to real data. Our analysis could po-
tentially be extended to other solvers for sparse recovery and
help analyze their behavior when the iteration is stopped be-
fore convergence.

2http://www.hlevkin.com/TestVideo/foreman.yuv
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