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ABSTRACT

Automatic face recognition is prevalent in a wide range of

systems these days and it is critical to explore new techniques

in order to enhance the state of the art. In this paper, we an-

alyze the Region Covariance Matrix (RCM) and its enhance-

ment based on Sigma sets as a feature extraction procedure

for face images. The RCM features encode the covariance of

various low level features,e.g., pixel intensities and gradients.

Sigma sets, on the other hand, reduce the computational com-

plexity of comparing two RCMs. Based on our experiments

on the Labeled Faces in the Wild (LFW) dataset, we show that

the proposed technique outperforms the popular Local Binary

Patterns (LBP) technique and is on par with other better per-

forming techniques that use complex classifiers.

Index Terms— Face recognition, Region covariance ma-

trix, Sigma sets.

1. INTRODUCTION

Face recognition is a form of biometric identification [12] in-

volving recognition of individuals based on the salient charac-

teristics of their face images. Be it for government use such as

law enforcement, voter identification, surveillance and immi-

gration, or for commercial use such as gaming industry, face

tagging on internet, e-commerce, healthcare and banking, a

large number of real world applications utilize face recogni-

tion. As a result, there has been enormous interest in this area

of research.

A variety of challenges are associated with a typical face

recognition task. While some may involve accounting for fa-

cial aging, marks, and facial expressions, others may be due

to non-rigid motion and background clutter, typical in videos;

yet some others may involve comparing face images over dif-

ferent media such as a sketch to a photograph or a near infared

image to a photo. A critical survey of still image and video

based face recognition research is provided in [13].

It has been observed that the performance of several state-

of-the-art face recognition methods degrades to a large ex-

tent in unconstrained environments. Figure 1 illustrates some

cases where a common face recognition algorithm based on

Local Binary Patterns (LBP) [28] fails to identify the image

pairs belonging to same person (shown in same column) as

∗The work was performed while the author was interning at Samsung.

Fig. 1. Example image pairs from the LFW where LBP fails. These

instances illustrate some typical sources of variations mentioned in

text: poor image quality, occlusions, and difference in facial expres-

sion. Images in the same column correspond to match pairs.

match pairs. One effective approach to alleviate these limi-

tations is by designing highly discriminative, robust and yet

simple image features that can be efficiently matched.

A typical face recognition system consists of two main

stages, namely, a feature extraction stage followed by a

matching stage. The first stage primarily involves extract-

ing low or high level informative features either manually or

automatically from images or videos. Depending on the rep-

resentation in feature space, these approaches can be broadly

divided into three categories, namely, holistic methods which

use global image information, such as [14], feature based

structural matching methods, e.g., [15] and hybrid methods

involving both holistic and structural matching procedures

such as [16]. While holistic methods are often simple and

computationally efficient, feature based structural matching

methods are more robust than holistic methods but often

require complex matching procedure.

The matching stage involves classification of an input

image into one of the pre-determined classes. In case of one-

to-one matching, the classes being considered are “match”

and “non-match”, and in case of one-to-many matching the

different classes indicate different identities registered in

the system. The classifiers used in this stage are typically

learned offline using training data, in an unsupervised [1],

semi-supervised [2] or supervised framework [3].

The quality of features, which are extracted based on ex-

pert knowledge [17] and/or learned from available training

data [18], is of critical importance. Among the holistic fea-

tures, the low level ones such as color, gradient and filter re-

sponses are the simplest choices [4, 5], but as such they are

not robust in the presence of illumination changes and non-

rigid motion and also typically have high dimensionality. In
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Fig. 2. Performance of sigma set descriptors on the same set of

image pairs considered in Figure 1. Blue box indicates correct result

while red denotes incorrect result.

this paper, we explore the use of Region Covariance Matrices

(RCM) as the set of holistic face image features and propose

further improvements in terms of feature representation and

matching procedure using sigma sets.

Region Covariance Matrices: The region covariance

matrix (RCM) of a local region in an image with respect to a

set of low level features essentially consists of the local 2nd

order statistics of the given features. RCM was first intro-

duced as a region descriptor by Tuzel et al. [6] and has since

been applied to many applications such as texture classifi-

cation, object detection [6, 19], object tracking [7, 20] and

human detection [8]. A major advantage of the covariance

matrices is that they have much lower dimensionality when

compared to the existing low level image features and can

be computed efficiently using integral images [6]. RCMs are

robust to small pose variations and provide a natural way for

fusing multiple features which might be correlated. These

descriptors have shown best discriminative power for human

detection tasks [9] and have also been recently studied in the

context of face recognition [10].

However, the main drawback of RCMs is that these de-

scriptors do not lie in a Euclidean space. For example, the

RCMs are not closed under multiplication with negative

scalars. In order to accommodate this fact, the arithmetic

operations on RCMs are borrowed from Riemmannian geom-

etry which are usually computationally complex.

Sigma Sets: Recently, Hong et al. [11] proposed a region

descriptor called sigma sets that possesses the effectiveness

of 2nd order statistics while at the same time has a highly

efficient matching procedure compared to RCM. Sigma set

consists of a small set of vectors that can be uniquely deter-

mined through Choloesky decomposition on the covariance

matrix. Further, distance between two sigma point-sets can

be efficiently computed using an approximation of Hausdorff

distance metric. Of late, sigma sets have been employed for

various applications [21], although we are not aware of any

work that has explored these descriptors for face recognition.

Motivated by the aforementioned attributes of sigma set

descriptors, we study their feasibility in the context of face

identification in the wild in this work. An illustration of the

benefits offered by these descriptors can be seen in Figure 2.

Image pairs enclosed in blue are the ones correctly identified

as “match pairs” by sigma set descriptors while the one en-

closed in red denotes an incorrect result. This is substantially

better than LBP.

The rest of the paper is organized as follows. In Section

2, we describe the proposed approach including the specific

details of RCM and Sigma sets construction. In Section 3, we

describe the details of the experimental framework and pro-

vide a comparison of the proposed technique with other state

of the art procedures. Section 4 provides the conclusions.

2. PROPOSED APPROACH

In the proposed approach, first, all face images are cropped

to a size of 200 × 200. Then, a set of low level features are

extracted from the face image. For this, we mainly consider

filters that capture local averaging and local gradient. These

include Gaussian, Sobel and Gabor filters. It is to be noted

that no pose correction is done on these images. Region co-

variance matrices and subsequently sigma sets are then con-

structed from these features. These form the feature descrip-

tors for the images under consideration. During matching

stage, Manhattan distance between sigma sets is used as the

distance metric.

We first describe the features used in constructing sigma

sets below.

Gaussian filter: Gaussian filters highlight average brightness

in a local region where the size of the locality is determined

by the scale or the variance of the 2D Gaussian filter kernel

used. A Gaussian kernel is described as

f(x, y) = Ae

(

−

(

(x−x0)2

2σ2
x

)

+
(

(y−y0)2

2σ2
y

))

, (1)

where best scale for our experiments was determined by vary-

ing the values values of σx and σy in steps of 0.1. Here x0

and y0 determine the center of the filter.

Sobel filter: Sobel filters highlight the change in intensity in

a local region. We convolve the image with horizontal and

vertical Sobel kernels to capture the complete gradient infor-

mation.

Gabor filter: Gabor filters aggregate directional gradients

and are able to effectively capture facial features. A 2D Gabor

kernel is the product of a Gaussian and a sine or cosine plane

wave. A 2D Gabor filter can be described as

g(x, y) = Ke−π(a2(x−x0)
2+b2(y−y0)

2)ej2π(u0x+v0y), (2)

where a and b determine the scale of the filter and u0 and v0
determine the frequency component of the filter. The particu-

lar value of scale is chosen after testing performance on five

standard scales, retaining the best one. For our analysis, we

consider eight different sine wave orientations and five differ-

ent combinations of frequencies and Gaussian scales.

After the filter responses are obtained, the image is uniformly

divided into 8 × 8 equal sized blocks and region covariance

matrices (RCM) based on the above mentioned features are

computed for each block.
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2.1. Covariance Descriptor Computation

Let I denote a face image. For a given rectangular region

R ∈ I with N pixels, let ~fi be a d dimensional feature vector

(consisting of Gabor, Gaussian and/or gradient responses) ex-

tracted from the ith pixel in R , and ~u be the mean vector of

the set of feature vectors ~fi in R. The d×d covariance matrix

C(R) of R can be calculated as

C(R) = FRF
T
R (3)

whereFR = [f̂1, ...f̂N ] denotes the matrix of centered vectors

f̂i =
1√
(N)

(~fi − ~u).

2.2. Sigma Sets Computation

A Sigma set associated with a covariance matrix is a small

canonical set of points S that have same covariance values

as the given matrix. In other words, the set of points S in a

Sigma set is equivalent to the set of feature vectors obtained

from the region R in terms of 2nd order statistics. Mathemat-

ically, it follows from Eq. 3 that for any matrix L that satisfies

C(R) = LLT , the set of columns of L has the same second

order statistic as R. One way to obtain such a decomposition

of the covariance matrix is using Cholesky decomposition.

A Cholesky decomposition is used to represent any symmet-

ric positive-definite matrix, such as a covariance matrix, as a

product of a lower triangular matrix and its transpose. The

fact that the component matrix of a Cholesky decomposition

is lower triangular, it imposes a canonical order on the set of

points it represents and this is very helpful in devising a sim-

ple distance metric between two sigma sets.

The sigma set computation can be summarized algorith-

mically as follows:

Given: A face regionR consisting of N, d×1 feature vectors.

Output: Sigma set S = [L1, ..., Ld] satisfying C(S) =
C(R).
Algorithm:

1. Calculate the d × d covariance matrix C = C(R) of the

face region R.

2. Perform Cholesky decomposition of C, C = LLT , where

L is a lower triangular matrix.

3. Multiply L by the scalar
√
d , i.e., L =

√
d× L.

4. S = [L1, ..., Ld] where Li is the ith column of L.

2.2.1. Distance measure

The distance between sigma sets can be evaluated as summa-

tion of point to point distance and is equivalent to modified

Hausdroff distance (MHD) [26], a widely used distance met-

ric over closed and bounded sets. Given two sigma sets SA

and SB , the modified Hausdroff distance is defined as

H(SA, SB) = max {h(SA, SB), h(SB, SA)} , (4)

where h(SA, SB) is the forward distance measure obtained

by matching the points in SA to points in SB and h(SB, SA)
is the backward distance that corresponds to matching SB to

SA. Here,

h(SA, SB) =
1

d

d
∑

i=1

d

min
j=1

(dE(L
A
i , L

B
j )), (5)

where LA
i and LB

j , i = 1, ...d denote the ith and jth points in

SA and SB respectively and dE is a preferred distance metric;

we use Manhattan distance in our experiments..

Since the structure of the sigma set enforces the first i
elements of ith sigma point to be zero, we can assume that

dE(L
A
i , L

B
j ) = ∞, i 6= j. (6)

The distance h(SA, SB) is thus given by

h(SA, SB) =
1

d

d
∑

i=1

dE(L
A
i , L

B
i ). (7)

Since dE(L
A
i , L

B
i ) = dE(L

B
i , L

A
i ) thus h(SA, SB) =

h(SB, SA) and the Eq. (4) becomes

H(SA, SB) =
1

d

d
∑

i=1

dE(L
A
i , L

B
i ). (8)

This distance measure is then used to accept or reject a match-

ing hypothesis based on certain system threshold.

3. EXPERIMENTS

Dataset: We conduct experiments on the Labeled Faces in

the Wild (LFW) data-set and use the image restricted con-

figuration. The data-set consists of 13,233 images of 5,749

people, which are organized into 2 views – a development set

of 2,200 pairs for training, 1,000 pairs for testing (model se-

lection), and a 10-fold cross-validation set of 6,000 pairs, on

which to evaluate final performance using the average pair-

wise accuracy metric as described in [22].

3.1. Performance Evaluation

In computing the distance between corresponding sigma sets

of two faces, we consider the four following possibilities:

1. Performance using a single scale Gabor filter, Gaussian

and Gradient Features (3G):

First, we consider single scale Gabor filter responses across 8
different orientations along with 4 Gaussian and 2 Sobel re-

sponses for constructing sigma sets. Average pairwise match-

ing accuracy on the cross-validation set was 79.54%.

2. Block-wise weighted distance between sigma sets 3G:

Since different regions of the face contribute in different pro-

portions for identification purposes, we next consider weight-

ing the distance values computed for different regions by their
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precision. The distance between two images I1 and I2 in this

scenario is computed as

D(I1, I2) =
1

d

T
∑

k=1

wk

d
∑

i=1

dE(L
bk
i , Lbk

i ), (9)

where wk is the learned weight (pairwise accuracy for cor-

responding blocks as learned from training instances) for the

corresponding blocks bk in two face images and T is the total

number of blocks. The average accuracy in this scenario was

82.32%.

3. Block-wise scale selection for Gabor filter along with

Gaussian and Gradient Features: Here, we learn the per-

formance of five different scales for individual regions and

finally use the scale that yields the best performance for indi-

vidual regions. The selected Gabor responses are then com-

bined with Gaussians and Gradient responses to evaluate per-

formance. The best kernel size for Gaussian filter is deter-

mined experimentally from the training data. With this setup,

average accuracy across the 10 folds was 81.73%.

4. Block wise scale selection for Gabor filter along with

Gaussian and Gradient features using the weighted dis-

tance measure: Finally, we incorporated block wise scale

selection for the Gabor filters along with Gaussian and Gradi-

ent features and used the weighted distance measure to com-

pute distance between the constructed 3G sigma sets. This

resulted in an average accuracy of 83.03%.

The corresponding ROC curves are depicted in Figure 4.

Computational Complexity: The amount of computations

Fig. 3. ROC curves for the various scenarios.

required for Cholesky decomposition (CD) of a d×d matrix is

O(d3) which is relatively small given that there are relatively

few features being processed. Additionally, CD ensures fast

distance computation that is linear in terms of the number of

feature elements unlike for RCM where one would require

complex computation of matrix expoenential or logarithm.

Comparison with other methods: Based on the characteris-

tics of our technique, we mainly focus on the image restricted

scenario where no additional training data is allowed. In this

scenario, the proposed technique is 1.4% more accurate than

the LBP features of the same dimensions (as that used for

sigma sets) which produce an accuracy of 81.65%. In fact,

Method Accuracy in % Comments

[25] 79.08± 0.14 aligned images

[27] 79.35± 0.55 aligned images

Sigma sets 83.03± 0.49 non-aligned images,

no training on view 2

[23] 84.08± 1.20 aligned images

[24] 87.47± 1.49 aligned images,

training on view 2.

Table 1. Comparison of the proposed method with state-of-the-art.

Method Good Bad Ugly

LBP 84.2 80.2 77.2

Sigma sets 86.1 83.5 79.3

Table 2. Quality based performance of the proposed features.

the dimensions of LBP features which produce one of the

best results on LFW dataset [29] is roughly 8 times more than

our feature dimensions. Also, the dimension of our features

is 1/5th in comparison to [24] thereby significantly reducing

the computational cost.

Moreover, unlike [24], we do not perform training the

model on 9 splits and testing on 10th split in view 2; instead

we directly test on each of the 10 splits using the parameters

learned from view 1. Despite the fact that the techniques

proposed in [24, 23] use trained classifiers (on view 2) and

also leverage upon the pre-registration of images, our method

yields comparable matching performance. It is to be noted

that the proposed method can be extended to incorporate

outside training data which can further improve the per-

formance. Table 1 provides a comparison of the proposed

method against some state-of-the-art techniques under image

restricted scenario.

Quality based performance: Here, we divide the set of

images, based on the maximum matching scores obtained

from them while comparing with other images including true

matches, into good (lowest distance scores), bad and ugly

(highest distance scores) categories such that each category

has same number of images. This division was based on

sigma sets-derived distance. We then compare the accuracy

of the proposed technique with LBP in each of these cate-

gories. As shown in Table 2, the proposed method performs

consistently better than LBP for images across all qualities.

4. CONCLUSIONS

We analyzed the feasibility of a new set of face descriptors

called sigma sets constructed from simple image features. Ex-

periments show promising performance on the challenging

LFW database. Future work will involve in testing these de-

scriptors on video sequences. We also plan to explore differ-

ent feature selection processes for constructing sigma sets.
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