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ABSTRACT

In compressive sensing, wavelet space is widely used to
generate sparse signal (image signal in particular) represen-
tations. In this work, we propose a novel approach of sta-
tistical context modeling to increase the level of sparsity of
wavelet image representations. It is shown, contrary to a
widely held assumption, that high-frequency wavelet coeffi-
cients have non-zero mean distributions if conditioned on lo-
cal image structures. Removing this bias can make wavelet
image representations sparser, i.e., having a greater number
of zero and close-to-zero coefficients. The resulting unbiased
probability models can significantly improve the performance
of existing wavelet-based compressive image reconstruction
methods in both PSNR and visual quality.

Index Terms— Compresses sensing, wavelet-based s-
parse image representation, structured sparsity.

1. INTRODUCTION

The compressive sensing (CS) theory [1] allows the recon-
struction of a sparse signal x from far fewer linear measure-
ments than the number of samples required by the Nyquist
sampling methods. To fulfill the promise of CS, a flurry of
research activities have been devoted to a new image acquisi-
tion paradigm: taking a relatively small set of random mea-
surements on a scene and then recovering the scene by com-
putational compressive image reconstruction (CIR) [2, 3].

As powerful and pleasing as it is in theory, one operational
hurdle of CS however requires some ingenuity to clear, that
is, the determination of a reconstruction space Ψ in which
the signal x has, ideally, the highest degree of sparsity pos-
sible. This is important because the sparsity level K of x
under Ψ determines the fidelity of CIR. Common choices of
sparsity spaces in CIR approaches are those of 2D transform-
s, such as discrete cosine transform (DCT), discrete wavelet
transform (DWT), KL transform (KLT), etc. But these signal-
independent transform spaces are adopted, to quite an extent,
because of their analytical amenability and past popularity;

they in their original form do not necessarily offer the spars-
est representations of a given natural image.

One way of compensating for the suboptimality of recon-
struction spaces is to exploit the dependencies between sparse
coefficients, known as the approach of so-called structural s-
parsity [4, 5, 6]. The model-based CS theory developed in [4]
exploits the block sparsity and tree structures of wavelet co-
efficients. In [5], group-sparsity regularization was proposed
to exploit the tree-structured correlations of the wavelet co-
efficients. Bayesian CIR approaches employing sophisticated
prior probability models have also been developed [6] to ex-
ploit the prior of the wavelet tree structures.

In this paper, we propose a sparsity fine tuning approach
to refine the image representation in a transform space in a
way such that it becomes more sparse to benefit CIR. Specif-
ically, we develop new techniques to increase the degree of
sparsity of wavelet representations. Our key observation is
that though the wavelet coefficients in a high-frequency sub-
band are zero-mean, in regions of high activities (e.g., edges
and textures) the distribution of wavelet coefficients often ex-
hibits a significant bias away from zero. Different from pre-
vious zero-mean statistical modeling of wavelet coefficients,
we propose to estimate the expectations of each wavelet co-
efficient conditioned on local image structure. The estimated
expectations are then used to remove the bias of the wavelet
distributions. The maximal a posterior (MAP) estimator with
the unbiased probability density functions (PDFs) are then
proposed for CIR. An efficient iterative shrinkage algorithm
is used to solve the resulting minimization problem. Experi-
mental results show that the proposed CIR method can signif-
icantly improve the wavelet-based CIR and outperform most
of existing CIR methods in both PSNR and visual quality.

2. SPARSITY FINE TUNING VIA CONTEXT
MODELING

Wavelet space is often chosen to generate sparse image rep-
resentations in CIR and other sparsity-based restoration tasks,
because the majority of wavelet coefficients in high-frequency
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subbands are zero or very close to zero. It is commonly as-
sumed that high-frequency wavelet coefficients obey a Lapla-
cian or generalized Gaussian distribution of zero mean. This
assumption only holds for the prior probability of wavelet co-
efficients in a high-frequency subband without any context.
However, because image signals are not stationary in wavelet
domain, if conditioning a wavelet coefficient αi, where i in-
dexes the location in the frequency-spatial wavelet domain, on
a context Ci ∈ RK of K neighboring coefficients of αi, then
the conditional PDF P (αi|Ci) generally exhibits some bias
with non-zero mean. To illustrate this, we plot in Fig. 1 the
conditional sample histograms in the LH wavelet subband of
image House. It can be observed that conditional histograms
differ significantly from one the other and have peaks quite far
away from the origin. This property was long known to image
coding researchers; they made coding gains on αi by driving
entropy coder with an estimated PDF P (αi|Ci), a process
called context modeling [7]. Much like context modeling for
entropy coding, we can make a wavelet image representation
sparser by estimating and removing the conditional expecta-
tion µi = E{P (αi|Ci)} from αi. Indeed, as the resulting
conditional PDF P (αi−µi|Ci) is centered at zero, (αi−µi)
is more likely to be zero or very small than αi, meaning that
the bias-removed wavelet representation becomes sparser.

(a) (b) (c) (d)

Fig. 1. (a): part of the LH subband of OWT of House image
in the 1st-level decomposition; (b)-(d): Histograms of coeffi-
cients conditioned on contexts A,B,C, the estimated means
are: (A) µ = 9.3, (B) µ = 6.76, (C) µ = 29.69.

To accurately estimate the PDF of wavelet coefficients,
we use the overcomplete wavelet transform (OWT). For cap-
turing all inter and intra subband correlations, the context Ci
should contain the coefficients near spatial position i in all
subbands. However, this yields a context vectorCi of high di-
mensions, running the risk of context dilution(curse of dimen-
sionality) when estimating P (αi|Ci). To prevent this prob-
lem, we simply use a image patch of size

√
K×
√
K centered

at spatial position i as the context. Also, to simplify the es-
timation task we use a parametric model (e.g., Laplacian) for
P (αi|Ci). Then the problem is reduced to the estimation of
the mean µ and variance σ2 of P (αi|Ci). To estimate µ and
σ2, we need to collect a set Si(Ci) of samples drawn from a
spatial context sufficiently close to Ci. Here, we collect the
samples whose contexts are within the first L closest contexts
to Ci.

3. THE PROPOSED COMPRESSIVE IMAGE
RECONSTRUCTION METHOD

In this section we develop a Maximal a Posterior (MAP) esti-
mator based on the above proposed unbiased Laplacian model
and construct a bias-removed `1 sparse model for CIR. Giv-
en y = Φx, where Φ is the measurement matrix, we jointly
estimate the wavelet coefficients α as well as the conditional
expectations µ by maximizing the posterior P (α,µ|y), i.e.,

(α∗,µ∗) = argmax
α,µ

logP (y|α,µ) + logP (α,µ), (1)

where P (y|α) is the Gaussian likelihood term, modeled as

P (y|α) = 1√
2πσn

exp(−||y −ΦΨα||22/(2σ2
n)), (2)

where σn denotes the standard deviation of the additive Gaus-
sian noise. The prior model P (α,µ) can be written as

P (α,µ) =
∏
i

P (αi, µi|Ci)

=
∏
i

P (αi|Ci, µi)P (µi|Ci).
(3)

The conditional prior probability model P (αi|Ci, µi) is given
by

P (αi|Ci, µi) =
1√
2σi

exp(−|αi − µi|/σi), (4)

where σi denotes the standard deviation of αi.
The expectations µi can be estimated from Si(Ci) as a

weighted average of the samples, i.e., µ̂i =
∑
l∈Si

wlαl. The
weights wl is computed as wi = 1

z exp(−||Cl − Ci||/h),
where z denotes the normalization factor and h is a pre-
defined constant. In general, αl and Cl are not available.
In practice, they can be obtained from initial estimate of the
original image x. Due to the estimation errors of wl and
αl, µ̂i may not be accurate enough. Thus, we model µ̂i as
µ̂i = µi + ei, where ei denotes the estimation error, which is
assumed to be the additive Gaussian noise. Thus, P (µi|Ci)
can be modeled as

P (µi|Ci) =
1√
2πσe

exp(− 1

2σ2
e

||µi −
∑
l∈Si

wlαl||22), (5)

where σ2
e denotes the variance of ei. By substituting Eqs.(4)

and (5) into Eq.(3), we obtain the prior model P (α,µ) as

P (α,µ) =
∏
i

c·exp(− 1

σi
|αi−µi|−

1

2σ2
e

||µi−
∑
l∈Si

wlαl||22).

(6)
where c denotes the constant.

By substituting Eqs. (2) and (6) into Eq.(1), we obtain

(α,µ) = argmin
α,µ

||y −ΦΨα||22 +
∑
i

λi|αi − µi|

+ η
∑
i

||µi −
∑
l∈Si

wlαl||22,
(7)
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where λi = 2
√
2σ2

n/σi and η = σ2
n/σ

2
e . Compared to

the conventional `1 sparse model, the above proposed bias-
removed `1 sparse model enjoys two advantages. First, the
nonzero means µi are used to reduce the magnitudes of those
nonzero wavelet coefficients, and thus significantly increase
the sparsity of the wavelet representation. Second, the reg-
ularization parameters λi are locally computed using σi that
can be estimated from Si. For expression convenience, we
rewrite Eq.(7) as

(α,µ) = argmin
α,µ

||y−ΦΨα||22+||Λ(α−µ)||1+η||µ−Wα||22,

(8)
where Λ is a diagonal weighting matrix whose diagonal ele-
ments are λi, and the matrixW is

W (i, j) =

{
wi,l, if l ∈ Si,
0, otherwise.

(9)

4. OPTIMIZATION ALGORITHM

The proposed objective function can be solved by alternative-
ly optimizing α and µ. With an initial estimate of µ, α can
be solved by minimizing

α = argmin
α
||y−ΦΨα||22+ ||Λ(α−µ)||1+η||µ−Wα||22,

(10)
which can be rewritten as

α = argmin
α
||ỹ −Aα||22 + ||Λ(α− µ)||1, (11)

where ỹ andA are defined as

ỹ =

[
y
ηµ

]
, A =

[
ΦΨ
ηW

]
. (12)

Eq.(11) is a weighted `1 sparse coding problem, which can
be efficiently solved by the iterative shrinkage algorithm [8].
The shrinkage function for updating α with fixed µ(k) can be
derived as

α
(k+1)
i = Sτ1(v

(k)
i − µ

(k)
i ) + µ

(k)
i , (13)

where Sτ1(·) denotes the soft thresholding operator and

v(k) =
1

c
A>(ỹ −Aα(k)) +α(k) (14)

and τ1 = λi

c , where c is chosen such that c > ||A>A||2.
After solving for α, an estimate of the original image x can
be obtained by inverse OWT as x(k+1) = Ψα(k+1).

For a fixed α(k+1), µ can be updated by solving

µ = argmin
µ
||Wα(k+1)−µ||22+

1

η
||Λ(α(k+1)−µ)||1, (15)

which can be solved in a closed-form, as

µ
(k+1)
i = Sτ2(Wα(k+1) − α(k+1)

i ) + α
(k+1)
i , (16)

where τ2 = λi

η . The overall algorithm for solving Eq.(8) is
summarized in Algorithm 1.

Algorithm 1. CS via unbiased Laplacian model
• Initialization:

- Obtain an initially recovered image x̂(0) using a stan-
dard WSR-CS recovery method;

- Form the sample set Si(Ci) via context modeling for
αi using x̂(0);
• Outer loop: for j = 1, 2, ......, J

- Inner loop (Solving Eq.(10) for α): for k =
1, 2, · · · ,K

- Compute v(k) via Eq.(14);
- Compute α(k+1) via Eq.(13);

- Update µ(j+1) via Eq.(16)
- Image update: x(j+1) = Ψα(j+1) via inverse OWT;
- If mod(j, J0) = 0, update Si(Ci),W and λi with the

improved estimates of x and α, respectively.

In Algorithm 1, we update Si(Ci), W and λi = 2σ2
n/σi

with the improved estimates of x and α in every J0 iterations
to save computational complexity.

5. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed
CIR algorithm. In our implementation, the CDF 9/7 wavelet
was used and image patches of size 7 × 7 were used as the
context. Without loss of generality, the CS measurements
were generated by randomly sampling the Fourier coeffi-
cients of test images. We also compared the proposed method
with the TV method of the well-known l1-Magic software
[9], the model-assisted CIR method (denoted as MARX-PC)
[10], and the well-known BM3D-based CIR method (denoted
as BM3D-CS) [11]. Note that the MARX-PC and BM3D-CS
methods are among the state-of-the-art CIR methods.

Fig. 2 presents the PSNR curves of the tested methods,
in which the number of CS measurements M is given as the
percentage of the total number of pixels N , and the labels
WSR-CS and WSR-µ-CS denote the CIR method using zero-
mean Laplace PDF and the proposed method, respectively.
As shown, the proposed WSR-µ-CS method significantly out-
performs the WSR-CS method. The WSR-µ-CS method also
outperforms other competing methods. The PSNR gains over
the BM3D-CS method of [11] that is ranked the second in the
comparison group can be up to 3.08 dB. Parts of the recon-
structed images by the tested methods are shown in Figs. 3-4,
which demonstrates the superiority of the proposed method
over other methods. The former reproduces much sharper and
cleaner image details than others.

4983



6. ACKNOWLEDGEMENT

This work was supported in part by the Natural Science Foun-
dation of China under Grant 61100154, Grant 61227004,
Grant 61331014, Grant 61372131 and Grant 61372071, the
Research Fund for the Doctoral Program of Higher Education
(No. 20130203130001), and the 111 Project: No. B07048.

(a) Barbara (b) boats

(c) house (d) lena256

Fig. 2. PSNR curves of the reconstructed images by different
CIR methods.
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