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ABSTRACT

In this paper we present an algorithm for sequence design
with magnitude constraints. We formulate the design problem
in a general setting, but also illustrate its relevance to parallel
excitation MRI. The formulated non-convex design optimiza-
tion criterion is minimized locally by means of a cyclic al-
gorithm, consisting of two simple algebraic sub-steps. Since
the algorithm truly minimizes the criterion, the obtained se-
quence designs are guaranteed to improve upon the estimates
provided by a previous method, which is based on the heuris-
tic principle of the Iterative Quadratic Maximum Likelihood
algorithm. The performance of the proposed algorithm is il-
lustrated in two numerical examples.

Index Terms— Sequence design, MRI, Optimization

1. INTRODUCTION

Sequence, or waveform, design aims to generate sequences
with specific desired properties, such as a certain spectral con-
tent, or good correlation properties. There is a wide range of
applications, for example, in communications, active sensing,
and MRI [1, 2, 3]. Typically, the signal to be designed is
characterized by means of an optimization problem. Solv-
ing the problem globally can be difficult when the criterion is
non-convex; however, in some cases a local minimization al-
gorithm is sufficient to find a good solution. Indeed, different
local optima correspond to possible candidates for a signal,
and since the problem is usually solved offline, it is possible
to generate several signals and choose the best among these
based on the criterion.

In this paper, we derive a cyclic algorithm that locally
solves a class of sequence design problems where a constraint
on the magnitude of the designed complex-valued signal is
enforced. This formulation has applications in MRI [4], but
could also apply to other fields where small low-cost ampli-
fiers are used. Typically, such amplifiers are single stage and
are not equipped with feedback control [5]. This can cause
nonlinear distortions of the signal in cases where the magni-
tude of the signal is varying rapidly [6]. By penalizing such
variations in the design, the resulting sequences can be ampli-
fied and transmitted with higher fidelity.

This work was partially funded by the European Research Council
(ERC) Advanced Grant, number 247035.

2. PROBLEM

In general terms, the criterion to be minimized can be formu-
lated as

f(x) = ‖d−Ax‖2W + λ‖R|x|‖2, (1)

where ‖·‖ is the Euclidean norm, | · | denotes the elementwise
magnitude, d ∈ CM is the desired signal, x ∈ CN is the sig-
nal to be designed, A ∈ CM×N and R ∈ CP×N are arbitrary
linear transformation matrices, and W ∈ CM×M is a posi-
tive semidefinite weighting matrix. The regularization term
contains a magnitude vector, which makes this function non-
convex in general. The minimization of (1) with respect to x
can be done in several ways; however, for large problems it is
necessary to find an efficient method with low computational
complexity.

The algorithm used in [4] for minimizing (1) is simi-
lar to the heuristic Iterative Quadratic Maximum Likelihood
(IQML) algorithm and is not guaranteed to converge, nor is it
a true minimization algorithm for the criterion [7]. However,
IQML does typically converge to a vector fairly close to a
minimizer of the stated criterion.

For the criterion in (1) the IQML algorithm can be de-
scribed as follows. The vector x can be elementwise parti-
tioned into its magnitude and phase as

xk = |xk|eiφk , k = 1 . . . N. (2)

By stacking the phases φk, k = 1 . . . N, into a vector φ, we
can form a criterion function

g(x,φ) = ‖d−Ax‖2W + λ‖Rdiag(e−iφ)x‖2, (3)

where diag(eiφ) is the matrix with diagonal elements eiφk .
The criterion in (3) has the property that g(x,φ) = f(x), but
for a fixed φ, the minimization becomes quadratic in x, and
can be solved by the least squares method. Then the phases
can be updated as φ = ∠x. These two steps are then iterated
until some predefined stopping condition is satisfied.

Since IQML is not a minimizer of (1), it does not get stuck
in local minima in the same way as a true minimization algo-
rithm does. This property, together with the observation that
IQML often converges rather rapidly, makes IQML a poten-
tial candidate for initialization of the local minimization al-
gorithm described in Section 3. However, when there is no
optimal vector xopt such that Axopt is close enough to d,
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IQML tends to have poor performance and might even never
converge. An example of this type of behavior is shown in
Section 5.

In [4], IQML is initialized by φ = 0, meaning that the
first optimization step consists of solving the following least-
squares problem

minimize
x

‖d−Ax‖2W + λ‖Rx‖2. (4)

This provides a reasonably good initialization for the non-
convex magnitude-constrained problem in (1).

3. MAGNITUDE-CONSTRAINED CYCLIC
OPTIMIZATION (MACO)

Using (2), and defining zk = |xk| ≥ 0, we can re-write the
problem of minimizing (1) as:

minimize
z,φ

∥∥∥∥∥d−
N∑
k=1

akzke
iφk

∥∥∥∥∥
2

W

+ λ‖Rz‖2

subject to z ≥ 0

, (5)

where ak is the k:th column of A. Assuming z and {φk}k 6=p
are given, let

dp = d−
N∑
k=1
k 6=p

akzke
iφk , (6)

and observe that

‖dp − apzpe
iφp‖2W + λ‖Rz‖2

= ‖dp‖2W + z2p‖ap‖2W + λ‖Rz‖2

− 2Re(zpe
−iφpa∗pWdp)

= const.− 2zp|a∗pWdp| cos(arg(a∗pWdp)− φp), (7)

where the constant term is independent of φp. Then it follows
that the minimizer with respect to φp is

φ̂p = arg(a∗pWdp). (8)

By cycling through the entire φ vector we obtain an updated
estimate, φ̂, for the next iteration.

Once the phase vector is updated, we have to solve the
minimization problem in (5) with respect to z ≥ 0 for a
fixed φ = φ̂. This is a linearly constrained quadratic pro-
gram (LCQP), which can be solved rather efficiently, for ex-
ample by using interior-point methods [8]. However, for large
dimensions it might be favorable to determine the {zk} one-
by-one, as was done above for {φk}. To see how this can be
done let us rewrite the criterion in (5) as∥∥∥∥[d0

]
−
[
Adiag(eiφ)

−
√
λR

]
z

∥∥∥∥2
W̃

, ‖c−Bz‖W̃ , (9)

where

W̃ =

[
W 0
0 IP

]
, (10)

and IP is the identity matrix of size P ×P . If we assume that
φ and {zk}k 6=p are given, and define

cp = c−
N∑
k=1
k 6=p

bkẑk, (11)

we can write (9) as

‖cp − bpzp‖2W̃ = ‖cp‖W̃ + z2p‖bp‖2W̃
− 2zpRe(b

∗
pW̃cp)

= const. + ‖bp‖2W̃

[
zp −

Re(b∗pW̃cp)

‖bp‖2W̃

]2
, (12)

where bp is the p:th column of B, and the constant term is
independent of zp. The minimizer ẑp ≥ 0 of (12) has the
following simple expression:

ẑp =

{
Re(b∗

pW̃cp)

‖bp‖2
W̃

if Re(b∗pW̃cp) > 0

0 otherwise
. (13)

This can be used to update ẑ, element by element, in the same
manner as for φ̂. By iterating the two steps, (8) and (13), the
criterion function in (5) will decrease monotonically, as each
step minimizes a part of the criterion. Since the criterion is
bounded from below, it follows that the algorithm will con-
verge to a local minimum. The proposed MACO algorithm is
summarized below:

Algorithm 1: MACO Sequence Design
1: Input: A,R,d,W, λ, initial guess of z
2: repeat
3: Step 1:
4: for all p do
5: Compute dp using (6)
6: Compute φ̂p using (8)
7: end for
8: Step 2:
9: for all p do

10: Compute cp using (11)
11: Compute ẑp using (13)
12: end for
13: until convergence
14: Output: Compute x̂ from ẑ and φ̂ using (2)

The computations in (6) and (11) can be performed recur-
sively to reduce the computational burden. We have

dp = d−
N∑
k=1
k 6=p

ake
iφkzk = d−Ax+ apxp, (14)
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where xp is the current estimate. After obtaining the updated
estimate x̂p we can express the next residual as

dp+1 = dp − apx̂p + ap+1xp+1. (15)

Because of this, d − Ax only has to be computed once; al-
though, to prevent accumulating numerical errors in the re-
cursion, a full re-computation of the residual can be done at
each iteration. A similar recursion holds for cp.

The algorithm can be initialized in several ways. A good
guess is, typically, provided by solving (4). The other option
considered here is to initialize the algorithm by IQML, given
that it has converged properly. By using the estimate obtained
from IQML as initialization, MACO is guaranteed to perform
at least as well, while taking advantage of IQMLs potential
ability to avoid some local minima.

4. APPLICATION TO MRI

In MRI, the problem is to design sequences used to excite,
or tip, the magnetic field vector in a certain region of a sub-
ject. Typically, such parallel/multi-coil excitation pulses have
rapidly varying magnitudes [9, 10]. As mentioned, the low-
cost amplifiers commonly used in this application can dis-
tort these signals, which leads to artifacts in the resulting im-
ages. Therefore, the signal magnitude should be made smooth
while trying to maintain a desired excitation pattern. The
multi-coil problem can be stated as follows [4]

argmin
{xi}Nc

i=1

∥∥∥∥∥d−
Nc∑
i=1

diag(si)Ãxi

∥∥∥∥∥
2

W

+ λ

∥∥∥∥∥
Nc∑
i=1

R̃|xi|

∥∥∥∥∥
2

, (16)

where Nc is the number of parallel transmit channels in the
multi-coil array, si ∈ CM is the vectorized spatial sensi-
tivity of coil i, and xi is the corresponding complex-valued
signal to be designed. By stacking the Nc signal vectors in
one vector x = [xT1 . . . xTNc

]T , and defining the matrices
A = [diag(s1)Ã . . . diag(sNc)Ã], and R = INc⊗R̃, where
⊗ is the Kronecker product, we get the problem in the same
form as (1). The desired signal d is in this case a vectorized
multi-dimensional excitation pattern in space. The matrix A
corresponds to a Fourier-type matrix that captures the, pos-
sibly non-uniform, sampling trajectory in the spatial Fourier
domain (k-space) over time. The regularization matrix R can,
for example, be determined by using a linear approximation
of the filtering occurring in the amplifier, and computing the
expected distortion filter. However, this requires knowledge
of, or direct measurements from, the amplifier used. The dis-
tortion of the amplifiers used in [4] was shown to be fairly
accurately modeled by a first-order difference filter, that is

R =


1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 −1


N−1×N

, (17)

which is the approximation we will consider here. For a
more detailed explanation of how one can achieve a multi-
dimensional excitation pattern in space from one or several
scalar time series, see for example [11].

5. NUMERICAL EXAMPLES

5.1. Example 1: A simple design

Let W and A in (1) be identity matrices; then the optimal
phases can be obtained in closed form as φ = ∠d. The re-
sulting problem for z is a convex LCQP that can be written as
follows

minimize
z

‖|d| − z‖2 + λ‖Rz‖2

subject to z ≥ 0
. (18)

Since the globally optimal solution of (18) can be computed,
this special case can be used as benchmark to compare the
IQML and MACO algorithms. In the example, N = 100
and λ = 1. Each element in d and the initialization x0, was
generated from uniform distributions for both the phase (be-
tween 0 and 2π) and the magnitude (between 0 and 1), and
the elements of R ∈ R100×100 were drawn from a zero-mean
Gaussian distribution with unit variance.

Monte Carlo simulations were performed by generating
1000 random initializations, and using these to start each al-
gorithm. The problem parameters, d and R were kept fixed
in all simulations. The resulting mean criterion as a function
of the iteration number is shown in Fig. 1, together with the
spread in terms of two standard deviations. As can be seen,
the proposed method converges to the optimal solution in less
than 20 iterations for all initializations, while IQML does not
converge at all. Even the initialization given by (4) resulted
in a similar behavior (not shown). This shows that IQML will
have poor performance in some cases, which is a partial moti-
vation for the local minimization algorithm presented herein.

5.2. Example 2: An MRI design

To make this example simple to understand, we will con-
sider the problem with a fully sampled rectangular grid in
k-space, no weighting, and a single transmitter coil. Fur-
thermore, λ = 10, and the desired 2D excitation pattern,
D ∈ R32×32, is a 10 × 10 square passband with unit mag-
nitude, centered in space, as shown in Fig. 3a. In 2D, the
problem can be formulated as

argmin
X

∥∥D− FXFT
∥∥2
F
+ λ ‖R|vec(X)|‖2 , (19)

where ‖ · ‖F denotes the Frobenius norm, F ∈ C32×32 is a
inverse discrete Fourier transform matrix, and vec(·) is the
columnwise vectorizing operator. By letting x = vec(X) ∈
C1024, d = vec(D) ∈ R1024, and A = F⊗F ∈ C1024×1024,
we can re-write the problem in the same form as (16). Here,
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Fig. 1. The mean criterion for IQML and MACO versus the
number of iterations, when applied to the simple design prob-
lem of (18) using 1000 random initializations. The light and
dark gray fields show the spread of the criterion (±2σ) for
IQML and MACO, respectively.

A∗A becomes diagonal, from which it follows that the opti-
mal phase vector φ? is independent of z. Therefore, MACO
will reach the optimum in one iteration if step 2 is executed
by solving the LCQP of (5). The corresponding algorithm,
where the LCQP is solved by MOSEK, is denoted MACO-
LCQP, and is included in the following for comparison. It
should, however, be noted that solving an LCQP in step 2
might become intractable for large problems. In these cases,
the elementwise update approach is preferable.

MACO, MACO-LCQP, and IQML were used to find the
solution to this problem. The initial guess for all algorithms
was obtained by solving the least-squares problem in (4). The
convergence in terms of the criterion function versus the num-
ber of iterations is shown in Fig. 2. The magnitudes of the
excitation patterns obtained after 30 iterations are shown in
Fig. 3b-d. The resulting stopband and passband ripples, to-
gether with the sub-criteria for the fit (first term of (1)) and
the magnitude smoothing (second term of (1)), are listed in
Table 1. The stopband and passband ripples were defined as
the maximum magnitude deviation from the desired excita-
tion pattern in the respective areas.

In this example, the regularization is easier to handle than
in the first example, and IQML converges. MACO-LCQP
converges in one iteration, as expected, while the standard
MACO has a slightly slower convergence rate. The time until
convergence, with a tolerance of 10−6, was 1041 s, 40 s, and
4 s, for IQML, MACO, and MACO-LCQP, respectively. At
iteration 30, MACO closely approximates the MACO-LCQP
solution, while IQML provides a smoother estimate with both
lower fit and higher ripple values.

For smaller values of λ, that is, less smoothness imposed,
IQML might outperform MACO for a given initialization as
it does not get stuck in local minima. However, IQML would
typically be used to initialize MACO in these cases, and there-
fore an improvement can still be expected.
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Fig. 2. Comparison of the criterion for IQML, MACO, and
MACO-LCQP versus the number of iterations, when applied
to the MRI example.
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Fig. 3. a) The desired excitation pattern for the MRI example.
Excitation patterns corresponding to the sequences designed
by: b) IQML, c) MACO, and d) MACO-LCQP, obtained after
30 iterations.

Table 1. Ripples and sub-criteria at iteration 30 for the differ-
ent methods in the case of the MRI example.

MACO MACO-LCQP IQML
Passband ripple 0.56 0.53 0.60
Stopband ripple 0.56 0.57 0.75
Fit-term 26.9 26.7 35.9
Smoothness-term 1.10 1.11 1.04

6. CONCLUSION

We have derived a simple algorithm with low computational
complexity, for solving least squares problems with magni-
tude constraints. The proposed MACO algorithm does not
suffer from the potential convergence problems of IQML, and
can further improve the results from IQML by truly minimiz-
ing the design criterion. The algorithm is useful for designing
RF pulse excitation sequences in parallel MRI, which can be
transmitted without compromising signal fidelity in the am-
plifier stage.
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