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ABSTRACT

This paper proposes to use the Total Generalized Variation (TGV)

of second order in a constrained form for image processing, which

we call the TGV constraint. The main contribution is twofold: i)

we present a general form of convex optimization problems with the

TGV constraint, which is, to the best of our knowledge, the first

attempt to use TGV as a constraint and covers a wide range of prob-

lem formulations sufficient for image processing applications; and

ii) a computationally-efficient algorithmic solution to the problem is

provided, where we mobilize several recently-developed proximal

splitting techniques to handle the complicated structured set, i.e., the

TGV constraint. Experimental results illustrate the potential appli-

cability and utility of the TGV constraint.

Index Terms— Total generalized variation (TGV), constrained

optimization, epigraphical projection, proximal splitting.

1. INTRODUCTION

The Total Variation (TV) [1, 2], defined as the total magnitude of

the vertical and horizontal discrete gradients of an image, is widely

known as a standard and effective prior for images and has been suc-

cessfully applied to a variety of problems arising in image processing

and computer vision. Roughly speaking, there are two ways to use

TV, that is, the TV regularization and the TV constraint. The TV reg-

ularization, minimizing an objective function involving TV, is much

more popular than the TV constraint, minimizing an objective func-

tion while keeping TV at some level. The TV constraint, however,

would be preferable in a number of cases over the TV regularization

because such a constrained use of priors often facilitates parameter

setting, as having been addressed, for example, in [3, 4, 5, 6], where

algorithms for solving convex optimization problems with the TV

constraint are also presented.

On the other hand, it is also well known that the so-called stair-

casing effect, which is the undesirable appearance of edges, accom-

panies the use of TV. The Total Generalized Variation (TGV) [7, 8]

was introduced to overcome this limitation and is recognized as a

well-established higher-order generalization of TV with sound the-

oretical properties and practical effectiveness. Indeed, the TGV of

second order has recently been utilized as a regularization form in

various applications [9, 10, 11, 12, 13, 14] and outperforms the TV

regularization, but handling TGV in a constrained form has, to the

best of our knowledge, not yet been addressed.

The above-mentioned things motivate us to develop a framework

that efficiently deals with the TGV constraint in optimization, which

is the main contribution of this paper and would increase the poten-

tial applicability and utility of TGV. To this end, first, we introduce

We would like to thank the anonymous reviewers for their helpful com-
ments. This work is supported in part by JSPS Grants-in-Aid for JSPS fel-
lows (24·2522) and (B-21300091).

a general form of convex optimization problems, where the sum of

possibly nonsmooth convex functions is minimized over the TGV

constraint (and possibly with other constraints). This formulation

covers a wide range of problem formulations sufficient for image

processing applications, and moreover, is designed to accept mul-

tichannel images (e.g., color images). Second, we decompose the

TGV constraint into certain simpler constraints and then reformulate

the problem into a certain product space expression. Finally, an ef-

ficient algorithmic solution to the reformulated problem is provided

by leveraging epigraphical projection techniques [5] and a primal-

dual splitting algorithm [15, 16]. The resulting algorithm requires

no inner iterations. As an application, we present image restoration

by using the TGV constraint with illustrative examples.

2. PRELIMINARIES

In the following, N, R, R+, and R++ denote the sets of positive in-

tegers, all, nonnegative, and positive real numbers, respectively. We

adopt the vector notation for multichannel images as follows: the

channel components on a multichannel image of sizeNv ×Nh×M
(Nv, Nh,M ∈ N) are stacked into a vector u := [u⊤

1 · · · u⊤
M ]⊤ ∈

R
MN in lexicographic order, where N = NvNh is the number

of the pixels, um ∈ R
N (m = 1, . . . ,M ) are the channels (e.g.,

M = 3 means color images), and ·⊤ stands for the transposition.

We denote the set of all proper lower semicontinuous convex func-

tions over a Euclidean spaceX by Γ0(X ) , and the ℓ2 norm by ‖·‖2.

2.1. Total Generalized Variation

By letting Dv,Dh ∈ R
N×N be the vertical and horizontal dis-

crete gradient operators with Neumann boundary, the first-order dis-

crete gradient operator for multichannel images can be expressed by

D := diag([D⊤
v D⊤

h ]
⊤, . . . , [D⊤

v D⊤
h ]

⊤) ∈ R
2MN×MN . We also

introduce the following linear operator

G := diag









−D⊤
v O

−D⊤
h −D⊤

v

O −D⊤
h



 , . . . ,





−D⊤
v O

−D⊤
h −D⊤

v

O −D⊤
h







 ∈ R
3MN×2MN ,

whereO denotes a zero matrix of appropriate size. Moreover, define

the mixed ℓ1,2 norm ‖ · ‖(K)
1,2 : RKN → R+ by

‖z‖(K)
1,2 :=

∑N

n=1

√

∑K−1
k=0 z2n+kN =

∑N

n=1 ‖z
(n)‖2, (1)

whereK ∈ N, zi denotes the ith entry of z, and

z
(n) := [zn zn+N · · · zn+(K−2)N zn+(K−1)N ]⊤ ∈ R

K .

The Total Generalized Variation (TGV) of second order for multi-

channel images [9], denoted by Jα
TGV : RMN → R+, is given by

Jα
TGV(u) := min

d∈R2MN
α‖Du− d‖

(2M)
1,2 + (1− α)‖Gd‖

(3M)
1,2 ,

where the left term corresponds to the total magnitude of the first-

order vertical and horizontal discrete gradients of all channels, the
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right one to that of the second-order, and α ∈ (0, 1) controls the
balance between them.

2.2. Primal-Dual Splitting Method

A primal-dual splitting method [15, 16] brings an algorithmic solu-

tion to the following convex optimization problem: find x⋆ in

argmin
x∈X

f1(x) + f2(x) + f3(Lx), (2)

where f1 is a differentiable convex function with β-Lipschitzian gra-
dient∇f1 : X → X for some β ∈ R++, f2 ∈ Γ0(X ), L : X → Y
is a linear operator (Y is another Euclidean space), and f3 ∈ Γ0(Y).
The algorithm is given by
⌊

x(n+1) = proxγ1f2
[x(n) − γ1(∇f1(x

(n)) + L∗y(n))],

y(n+1) = proxγ2f
∗

3
[y(n) + γ2L(2x

(n+1) − x(n))],
(3)

where prox denotes the proximity operator1, f∗
3 the Fenchel-

Rockafellar conjugate function2 of f3, L∗ the adjoint operator

of L, and γ1, γ2 ∈ R++ satisfy γ−1
1 − γ2‖L‖

2
op ≥ β

2
(‖ · ‖op stands

for the operator norm). Under some mild conditions, the sequence

(x(n))n∈N converges to a solution to (2).

3. PROPOSED FRAMEWORK

3.1. Problem Formulation

For arbitrary chosen µ ∈ R+ and α ∈ (0, 1), we newly define the
TGV constraint as follows:

Cα,µ
TGV := {(u,d) ∈ R

MN × R
2MN | α‖Du− d‖

(2M)
1,2 + (1− α)‖Gd‖

(3M)
1,2 ≤ µ},

which is evidently a nonempty closed convex set. Our target convex

optimization problem with the TGV constraint is then formulated as

follows: find (u⋆,d⋆) in

argmin
u,d

ϕ(u,d) +

S
∑

s=1

ψs(Lsu,Psd) s.t.

{

u ∈ [ω, ω]MN ,

(u,d) ∈ Cα,µ
TGV ,

(4)

where ϕ : R3MN → R is a differentiable convex function with β-
Lipschitzian gradient ∇ϕ : R

MN → R
MN for some β ∈ R++,

Ls ∈ R
Ls×MN and Ps ∈ R

Ps×MN (s = 1, . . . , S) are matrices,
ψs ∈ Γ0(R

Ls+Ps) (s = 1, . . . , S), and [ω, ω]MN is a numerical

range constraint with ω, ω ∈ R (ω ≤ ω). Here we assume that the
proximity operators of ψs (s = 1, . . . , S) are computable.

Proposition 3.1. Suppose that [ω, ω]MN × R
2MN ∩ Cα,µ

TGV 6= ∅.
Then (4) has at least one solution.

Proof. By using the indicator functions3 of [ω, ω]MN and Cα,µ
TGV , (4)

can be rewritten as

min
u,d

ϕ(u,d) +
∑S

s=1 ψs(Lsu,Psd) + ι[ω,ω]MN (u) + ιCα,µ
TGV

(u,d). (5)

Then we only need to check the coercivity4 of (5). If ‖u‖2 → ∞
then ι[ω,ω]MN (u) → ∞, else if ‖d‖2 → ∞ then ιCα,µ

TGV
(u,d) →

1The proximity operator [17] of a function f ∈ Γ0(X ) of an index γ ∈

R++ is defined by proxγf (x) := argminy∈X f(y) + 1
2γ

‖x− y‖22.
2The Fenchel-Rockafellar conjugate function of f ∈ Γ0(H) is defined

by f∗(ξ) := supx∈H{〈x, ξ〉 − f(x)}. The proximity operator of f∗ can

be expressed as proxγf∗ (x) = x− γproxγ−1f (γ
−1

x).
3For any closed convex set C ∈ X , the indicator function of C is de-

fined by ιC(x) := 0, if x ∈ C; ∞, otherwise. The proximity operator
of ιC is equivalent to the metric projection onto C, i.e., proxγιC (x) =

argminy∈C ‖x− y‖ =: PC(x) (∀γ ∈ R++).
4A function f ∈ Γ0(X ) is called coercive if ‖x‖2 → ∞ ⇒ f(x) →

∞. In this case, the existence of a minimizer of f is guaranteed, that is, there
exists x⋆ ∈ dom(f) such that f(x⋆) = infx∈X f(x).

∞, which completes the proof. ✷

Remark 3.1 (Other constraints). One can impose other convex con-

straints to (4) via their indicator functions. Specifically, for any

closed convex setC (the metric projection onto it is computable) and

for any pair of matricesM1 andM2, imposing (M1u,M2d) ∈ C
to (4) can be realized by assigning ψs := ιC , Ls := M1, and

Ps := M2.

3.2. Optimization

In what follows, we reformulate (4) to solve it by (3) with the help of

epigraphical projection techniques [5]. The main computational dif-

ficulty stems from the fact that the metric projection onto the TGV

constraint is unavailable (see footnote 3 for the definition of the met-

ric projection). To circumvent this, first, we give another expression

of the TGV constraint as follows:

(u,d) ∈ Cα,µ
TGV ⇔ (Du− d,Gd) ∈ Cα,µ

1,2 , (6)

where

Cα,µ
1,2 := {(z1, z2) ∈ R

(2+3)MN | α‖z1‖
(2M)
1,2 + (1− α)‖z2‖

(3M)
1,2 ≤ µ}.

Second, we introduce the following two closed convex sets:

CK,w

epi,ℓ2
:= {(z, ζ) ∈ R

KN × R
N | w‖z(n)‖2 ≤ ζn, n = 1, . . . , N}, (7)

Cµ

hs
:= {(ζ1, ζ2) ∈ R

N × R
N |

∑2
i=1〈1N , ζi〉 ≤ µ}, (8)

where w ∈ R++, ζn is the nth entry of ζ, and 1N := [1 · · · 1]⊤ ∈

R
N (see (1) for the definition of z(n)). As will be explained, the

metric projection onto (7) is computable by epigraphical projection

techniques. Meanwhile, (8) is a closed half space, the metric projec-

tion onto which can also be computed. Then, we can decompose the

right inclusion in (6) into three inclusions via the above sets and the

auxiliary variables η1,η2, as follows:

(Du− d,Gd) ∈ Cα,µ
1,2 ⇔











(Du− d,η1) ∈ C2M,α

epi,ℓ2
,

(Gd,η2) ∈ C3M,1−α

epi,ℓ2
,

(η1,η2) ∈ Cµ

hs
,

(9)

which translates the TGV constraint into simpler sets, the metric pro-

jections onto which are available. Our target problem is finally re-

formulated as follows: find (u⋆,d⋆) in

arg min
u,d,η1,η2

ϕ(u,d) +
∑S

s=1 ψs(Lsu,Psd) s.t.



















u ∈ [ω, ω]MN ,

(Du− d,η1) ∈ C2M,α

epi,ℓ2
,

(Gd,η2) ∈ C3M,1−α

epi,ℓ2
,

(η1,η2) ∈ Cµ

hs
.

(10)

Now, by letting

L :=

























D −I O O

O O I O

O G O O

O O O I

L1 P1 O O

...
...

...
...

LS PS O O

























,x :=









u

d

η1

η2









,y :=

























z1

ζ1

z2

ζ2

ξ1

...

ξS

























f1(x) := ϕ(u,d), f2(x) := ι[ω,ω]MN (u) + ιCµ
hs
(η1,η2), and

f3(y) := ι
C

2M,α

epi,ℓ2

(z1, ζ1) + ι
C

3M,1−α

epi,ℓ2

(z2, ζ2) +
∑S

s=1 ψs(ξs),

(10) can be seen as (2), where I denotes identity matrices of appro-

priate size. The gradient of f1 is equivalent to that of ϕ, and the

computation of the proximity operators of f2 and f3 can be decou-
pled with respect to each function in f2 and f3 because the supports
of the variables corresponding to each function are separable. This

structure makes it possible to solve (2) with the above settings, i.e.,
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(a) Original (b) TV: µ = JTV(v)/20

PSNR=36.46, SSIM=0.9301

(c) TV: µ = JTV(v)/30

PSNR=36.44, SSIM=0.9660

(d) TV: µ = JTV(v)/40

PSNR=28.83, SSIM=0.9635

(e) Noisy (f) TGV: µ = JTGV(v)/200

PSNR=37.42, SSIM=0.9773

(g) TGV: µ = JTGV(v)/300

PSNR=37.35, SSIM=0.9827

(h) TGV: µ = JTGV(v)/400

PSNR=35.93, SSIM=0.9797

Fig. 1. Gaussian denoising results using a grayscale synthesized image.

(10), by (3), resulting in Algorithm 3.1 (see also footnote 2), where

∇uϕ and ∇dϕ denote the gradients of ϕ with respect to u and d,

respectively. The computations of the metric projections required in

the algorithm are summarized in the following remark.

Remark 3.2 (Computations of metric projections).

• P[ω,ω]MN is simply calculated by pushing each entry into [ω, ω].
• P

C
K,w

epi,ℓ2

can be computed by using [5, Corollary 3.2] as follows:

P
C
K,w

epi,ℓ2

(z, ζ) = (z̃, ζ̃), where, for n = 1, . . . , N , (z̃(n), ζ̃n) :=











(0, 0), if ‖z(n)‖2 < −wζn,

(z(n), ζn), if ‖z(n)‖2 <
ζn
w
,

1
1+w2 (1 +

wζn

‖z(n)‖2
)(z(n), w‖z(n)‖2), otherwise.

• PC
µ

hs
is given by [18, (3.3-10)]: PC

µ

hs
(x) := x, if 〈1N ,x〉 ≤ µ;

x+ µ−〈1N ,x〉
N

1N , otherwise.

3.3. Application to Image Restoration

Consider the following observation model:

v = Φuorg + nσ (11)

where v ∈ R
L (L and MN may be different) is an observation,

uorg ∈ R
MN an unknown clean image we wish to estimate, Φ ∈

R
L×MN a linear operator representing some degradation (e.g., blur),

and nσ ∈ R
L is an additive white Gaussian noise with standard

deviation σ ∈ R+. Image restoration by using the TGV constraint

under (11) is formulated as follows: find (u⋆,d⋆) in

argmin
u

1
2
‖Φu− v‖22 s.t.

{

u ∈ [0, 255]MN ,

(u,d) ∈ Cα,µ
TGV ,

(12)

where the objective function is the standard ℓ2 data-fidelity for a

Gaussian noise contamination, and [0, 255]MN represents the nu-

merical range of eight-bit images. This formulation corresponds to

maximize the likelihood of u while keeping a reasonably low TGV,

expected to result in an effective restoration.

Algorithm 3.1 Solver for (4)

1: Set n = 0 and choose u
(0),d(0),η

(0)
i , z

(0)
i , ζ

(0)
i (i = 1, 2), ξ(0)

s (s =
1, . . . , S), γ1, γ2.

2: while a stop criterion is not satisfied do

3: ū
(n) = u

(n)
− γ1(∇

uϕ(u(n),d(n)) + D
⊤
z
(n)
1 +

∑S
s=1 L

⊤

s ξ(n)
s )

4: u
(n+1) = P[ω,ω]MN (ū(n))

5: d
(n+1) = d

(n)
− γ1(∇

dϕ(u(n),d(n)) − z
(n)
1 + G

⊤
z
(n)
2 +

∑S
s=1 P

⊤

s ξ(n)
s )

6: η̄
(n)
i = η

(n)
i − γ1ζi (∀i = 1, 2)

7: (η
(n+1)
1 ,η

(n+1)
2 ) = P

C
µ

hs
(η̄

(n)
1 , η̄

(n)
2 )

8: z̄
(n)
1 = z

(n)
1 + γ2(D(2u(n+1)

− u
(n)) − 2(d(n+1)

− d
(n)))

9: z̄
(n)
2 = z

(n)
2 + γ2G(2d(n+1)

− d
(n))

10: ζ̄
(n)
i = ζ

(n)
i + γ2(2η

(n+1)
i − η

(n)
i ) (∀i = 1, 2)

11: ξ̄
(n)
s = ξ(n)

s +γ2(Ls(2u
(n+1)

−u
(n))+Ps(2d

(n+1)
−d

(n))) (∀s =
1, . . . , S)

12: (z
(n+1)
1 , ζ

(n+1)
1 ) = (z̄

(n)
1 , ζ̄

(n)
1 ) − γ2P

C
2M,α

epi,ℓ2

( 1
γ2

z̄
(n)
1 , 1

γ2
ζ̄
(n)
1 )

13: (z
(n+1)
2 , ζ

(n+1)
2 ) = (z̄

(n)
2 , ζ̄

(n)
2 ) − γ2P

C
3M,1−α

epi,ℓ2

( 1
γ2

z̄
(n)
2 , 1

γ2
ζ̄
(n)
2 )

14: ξ(n+1)
s = ξ̄

(n)
s − γ2prox 1

γ2
ψs

( 1
γ2

ξ̄
(n)
s ) (∀s = 1, . . . , S)

15: n = n + 1
16: end while
17: Output u(n)

By letting ϕ(u,d) := 1
2
‖Φu− v‖22, ψs(Lsu,Psd) = 0 (s =

1, . . . , S), and [ω, ω] := [0, 255], (4) is reduced to (12), so that we
can solve (12) by Algorithm 3.1, where∇ϕu(u,d) = Φ⊤(Φu−v)
and∇ϕd(u,d) = 0.

4. EXPERIMENTAL RESULTS

We have examined how the TGV constraint performs compared

to the TV constraint in several restoration problems.5 For solv-

5The experiments do not aim to give a state-of-the-art restoration per-
formance, but concentrates on demonstrating how the TGV constraint acts.
Although the use of nonlocal priors (e.g., nonlocal TV) would be necessary
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(a) Original (b) Noisy

(c) TV: µ = JTV(v)/4

PSNR=29.75, CIEDE=3.087

(d) TGV: µ = JTGV(v)/20

PSNR=30.23, CIEDE=3.032

Fig. 2. Gaussian denoising results using a natural color image.

ing optimization problems associated with TV constraint (i.e., re-

placing Cα,η
TGV by the TV constraint), we also use the primal-dual

splitting algorithm [15] with epigraphical projection techniques

proposed in [5]. The parameters γ1 and γ2 in Algorithm 3.1 are

chosen as 0.01 and 1/(12γ1), and we set the stopping criterion as
‖u(n+1)−u(n)‖2

255
≤ 0.002. The weight α in the TGV constraint is

fixed to 0.5 in all the following experiments.

4.1. Denoising

We first consider a simple Gaussian denoising problem (thusΦ = I

in (11)), where test images are contaminated by an additive white

Gaussian noise with standard deviation σ = 25.5.

The results using a grayscale synthesized image with various

µ are shown in Fig. 1, where we use JTV(v) := ‖Dv‖2M1,2 and

JTGV(v) := α‖Dv‖2M1,2 +(1−α)‖GDv‖3M1,2 (v is a given noisy im-

age) for choosing µ. For objective evaluation, their PSNR [dB] and

SSIM [19] are also presented.6 As we expected, the smaller µ results
in a smoother image in both cases of TV and TGV. The staircasing

effect appears in the resulting images by using the TV constraint

even if we choose a very small µ (see Fig. 1(d)). By contrast, grada-
tion is well reconstructed by using the TGV constraint (see Fig. 1(g)

and (h)).

We also examine the denoising capability of the TGV constraint

using a natural color image7 (Fig. 2), where µ is adjusted to max-

imize the resulting PSNR (JTV(v)/4 for TV and JTGV(v)/20 for

TGV). Here CIEDE2000 [20] is adopted for color quality assess-

for producing state-of-the-art results, developing techniques for local priors,
such as TV and TGV, is still important, for example, for the following rea-
sons: i) local priors are free from chicken-and-egg self-similarity evaluation
such as block matching, so that it can be readily used in various restoration
scenarios; and ii) initial estimation required for nonlocal priors is usually
executed by local priors, which affects the performance of nonlocal priors.

6PSNR is defined by 10 log10(255
2MN/‖u − uorg‖22) and SSIM by

[19, (13)]. For both criteria, a higher value indicates a better quality.
7http://r0k.us/graphics/kodak/andwww.mayang.com/

textures

(a) Original (b) Blur+noise

(c) TV: µ = JTV(v)/3.5

PSNR=31.43, CIEDE=3.346

(d) TGV: µ = JTGV(v)/30

PSNR=31.71, CIEDE=3.250

Fig. 3. Deblurring results using a natural color image.

ment.8 One sees that the use of the TGV constraint nicely resolves

smooth regions, so that the resulting image indicates better PSNR

and CIEDE2000.

4.2. Deblurring

Second we apply the TGV constraint to a deblurring problem, i.e.,Φ

in (11) being a blur operator. Here, a natural color image9 is blurred

by the 5 × 5 Gaussian kernel with standard deviation 2, and then a
white Gaussian noise is added (σ = 25.5).

The results are given in Fig. 3 with their PSNR and CIEDE2000.

Again, we manually adjust µ to achieve the best performance in the

sense of PSNR (JTV(v)/3.5 for TV and JTGV(v)/30 for TGV). We

observe that the use of the TGV constraint significantly reduces the

staircasing effect (PSNR and CIEDE2000 are also improved).

5. CONCLUDING REMARKS

We have proposed a novel use of TGV, i.e., the TGV constraint, with

an efficient optimization framework. The proposed framework han-

dles a very general optimization formulation, that is, the minimiza-

tion of the sum of possibly nonsmooth convex functions over the

TGV constraint and other convex constraints. We have illustrated

the TGV constraint over several image restoration applications.

Even though we focused on the single use of the TGV constraint

as a prior in the presented applications, it can be used together with

other priors, such as a color-line prior for color artifact reduction

[21], which would compensate for the shortcomings of TGV. The

TGV constraint is also applicable to non-Gaussian noise contami-

nation scenarios, for example, impulsive noise [22, 23] and Poisson

noise [24, 25, 26], with suitable data-fidelity design. Other than that,

it is interesting to utilize the TGV constraint for cartoon-texture de-

composition, as studied in [27, 28, 29, 30].

8CIEDE2000 is known as a better criteria for the evaluation of color qual-
ity than PSNR (a smaller value indicates a higher quality).

9cc licensed ( BY ) flickr photo by ˆ@ˆina (Irina Patrascu): http://
flickr.com/photos/angel_ina/3201337190/
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