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ABSTRACT
Ramanujan sums have in the past been used to represent arith-
metic sequences. It is shown here that for finite duration (FIR)
sequences with length N , the traditional representation is not
suitable. Two new types of Ramanujan-sum expansions are
proposed here for the FIR case, each offering an integer ba-
sis. One of these is particularly suited to identify periodicities
in the FIR sequence. This representation in fact expresses any
FIR sequence as a sum of orthogonal sequences each with a
hidden periodicity corresponding to a divisor of N .

Index Terms— Ramanujan sums, periodicity, periodic
subspaces, integer basis, periodic orthogonal projections.

1. INTRODUCTION

In 1918 the famous Indian mathematician Ramanujan intro-
duced a trigonometric summation, now called the Ramanujan
sum. Given an integer q, the qth Ramanujan sum (RS) is de-
fined as [11]

cq(n) =

q∑
k=1

(k,q)=1

ej2πkn/q =

q∑
k=1

(k,q)=1

W−knq (1)

where Wq = e−j2π/q. Here the notation (k, q) denotes the
greatest common divisor (gcd) of k and q. Thus (k, q) = 1
means k and q are coprime. For example c9(n) = W−n9 +
W−2n9 +W−4n9 +W−5n9 +W−7n9 +W−8n9 . Comparing (1)
with the inverse DFT formula, it follows that the q-point DFT
of cq(n) is Cq[k] = q if (k, q) = 1 and zero otherwise. This
can be regarded as an equivalent definition of cq(n). Ramanu-
jan’s motivation in introducing this sum was to show that sev-
eral standard arithmetic functions in the theory of numbers
can be expressed as linear combinations of cq(n), that is,

x(n) =

∞∑
q=1

αqcq(n), n ≥ 1, (2)

An arithmetic function is a sequence (i.e., function of integer
argument), and is usually (but not necessarily) integer val-
ued. Examples include the Möbius function µ(n), Euler’s to-
tient function φ(n), the von Mangoldt function Λ(n), and the
Riemann-zeta function ζ(s) [6]. The Ramanujan expansion
(2) was derived in [11] for many arithmetic functions. Eq. (2)
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is sometimes referred to as the Ramanujan Fourier transform
expansion (i.e., αq are the RFT coefficients) [10]. A number
of authors have used the following formula for the calculation
of the coefficients αq [2], [4], [9]:

αq =
1

φ(q)

(
lim
M→∞

1

M

M∑
n=1

x(n)cq(n)

)
(3)

Here, the Euler totient function φ(q) is the number of in-
tegers in 1 ≤ k ≤ q coprime to q. The application of Ra-
manujan sums in the context of signal processing has also
been examined by a number of authors [9], [10], [3], [12],
[8], [14], [7]. Applications in the representation of certain
periodic signals was demonstrated by Planat (e.g., see [10]).
Time-frequency analysis of signals based on Ramanujan ex-
pansions was considered in a letter by Sugavaneswaran [14],
based on the 2D version of RS. An application in cardiology
was described in [7]. A very insightful connection between
Ramanujan sums and the proof of the famous twin-prime con-
jecture was established by Gadiyar and Padma in [4] based
on the possibility of a Wiener-Kintchine like formula for Ra-
manujan expansions. The conjecture itself has been proved
recently by Yitang Zhang [17].

In this paper we consider finite duration (FIR) sequences
x(n) of arbitrary length N . We show in Sec. 3 that the ex-
pansion formula based on (3) will not work, and propose a
simple solution. Then in Sec. 4 we introduce a novel way
to represent arbitrary FIR sequences using Ramanujan sums.
This representation expresses x(n) as a sum of orthogonal
sequences each with a hidden periodicity corresponding to a
divisor of N . Since cq(n) are integers, this offers an integer
basis for FIR sequences. We also demonstrate the application
of this representation in identifying periodic components. For
convenience a brief review of basic properties of Ramanujan
sums is included in Sec. 2.

2. BASIC PROPERTIES OF RAMANUJAN SUMS

From the definiton (1) we see that cq(n) = cq(n + q) for all
n, so cq(n) is periodic. Observe also that cq(n) is always real.
This is because if (k, q) = 1 then (q − k, q) = 1, so ej2πkn/q

and e−j2πkn/q both appear in the sum (1). It therefore also
follows that cq(n) =

∑
(k,q)=1 cos(2πkn/q) (Ramanujan’s

original definition [11]), which immediately implies cq(n) =
cq(−n). Thus cq(n) is real, periodic, and symmetric. It can
be written in either one of the forms

cq(n) =

q∑
k=1

(k,q)=1

W kn
q =

q∑
k=1

(k,q)=1

W−knq (4)
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where Wq = e−j2π/q. What is less obvious is the fact that
cq(n) is integer valued for all q and n. Ramanujan proved
this by proving the relation cq(n) =

∑
d|(q,n) dµ(q/d) where

µ(n) is the Möbius function [6], and the sum is over all inte-
gers d which are divisors of q and n. Since µ(n) is an integer
for all n, it follows that cq(n) is an integer for all n and q.
Here are the first few Ramanujan sums written for one period:

c1(n) = 1, c2(n) = {1,−1}, c3(n) = {2,−1,−1},
c4(n) = {2, 0,−2, 0}, c5(n) = {4,−1,−1,−1,−1} . . .

The following orthogonality property of Ramanujan se-
quences is crucial (here m = lcm(q1, q2), where lcm denotes
least common multiple):

m−1∑
n=0

cq1(n)cq2(n− l) = 0, q1 6= q2 (5)

for any integer l. This can be proved using the result∑m−1
n=0 W

−k1n
q1 W k2n

q2 = 0, when (k1, q1) = (k2, q2) = 1
and 1 ≤ ki ≤ qi.

3. FIR SEQUENCES AND RAMANUJAN SUMS

Arithmetic functions (for which Ramanujan expansions were
originally used) are infinite duration sequences, and the coef-
ficients have to be evaluated through the limiting process (3).
If x(n) is FIR with support 1 ≤ n ≤ N , then

lim
M→∞

M∑
n=1

x(n)cq(n)/M = lim
M→∞

N∑
n=1

x(n)cq(n)/M → 0

which shows that αq → 0 for each q. Thus, the conventional
approach does not lead to a correct expansion of the form (2).
So let us try a different approach. Given an FIR x(n), let us
pretend that it is one period of a periodic signal, so that

x(n) = x(n+N) (6)

For fixed q if the limit in (3) exists then in particular it is equal
to limk→∞

∑kqN
n=1 x(n)cq(n)/kqN. But x(n) and cq(n) have

periods N and q respectively, so x(n)cq(n) repeats every qN
samples. So the above limit equals

∑qN
n=1 x(n)cq(n)/qN,

and

αq =
1

qNφ(q)

qN∑
n=1

x(n)cq(n) (7)

Using x(n) = x(n+N) and the expression (4) for cq(n) we
can rewrite

qN∑
n=1

x(n)cq(n) =

N∑
n=1

x(n)

q−1∑
i=0

cq(n+ iN)

=

N∑
n=1

x(n)

q∑
k=1

(k,q)=1

W kn
q

q−1∑
i=0

W ikN
q

Since (k, q) = 1, the inner sum is zero unless N is a multiple
of q. Thus αq =

∑N
n=1 x(n)cq(n)/Nφ(q) when q is a divisor

of N , and is zero otherwise. So the representation of a length
N FIR sequence x(n) is given by

x(n) =
∑
qi|N

αqicqi(n), 1 ≤ n ≤ N, (8)

where qi|N means that qi is a divisor of N , and where

αqi =
1

Nφ(qi)

N∑
n=1

x(n)cqi(n) (9)

The number of terms in (8) is equal to the number of divisors
of N , which is less than N (unless N = 1). For example, if
N = 6 its divisors are {1, 2, 3, 6}, so (8) reduces to x(n) =
α1c1(n) + α2c2(n) + α3c3(n) + α6c6(n). Thus the number
of free coefficients αqi is less than the number of samples in
x(n) which shows that an arbitrary FIR sequence cannot be
represented as in (2) (i.e., as in (8)) if αq is as in (3).

The good news however is that we can successfully rep-
resent an FIR sequence using Ramanujan sums if we change
our approach a little bit. Thus consider the expansion

x(n) =

N∑
q=1

aqcq(n), 0 ≤ n ≤ N − 1 (10)

where the first N sequences cq(n) are used. For convenience
the support is assumed to be 0 ≤ n ≤ N−1. In matrix vector
form 

x(0)
x(1)

...
x(N − 1)


︸ ︷︷ ︸

x

= AN


a1
a2
...
aN


︸ ︷︷ ︸

a

(11)

where the qth column of AN has the elements cq(n) repeated
with period q until we get N rows. For example,

A6 =


1 1 2 2 4 2
1 −1 −1 0 −1 1
1 1 −1 −2 −1 −1
1 −1 2 0 −1 −2
1 1 −1 2 −1 −1
1 −1 −1 0 4 1

 (12)

The Ramanujan expansion (10) will always be successful be-
cause the N × N matrix AN always has full rank [16]. An
outline of the proof is as follows: by using elementary col-
umn operations the preceding matrix can be transformed into
a triangular matrix with diagonal elements 1, 2, . . . , q, so that
|detAq| = q! 6= 0. The preceding transformation is justified
in [16] based on the recursion

cq(n) = qδ((n))q −
∑
qi|q
qi<q

cqi(n), (13)

which is proved in [16]. Here δ((n))q = 1 when n is a multi-
ple of q, and zero otherwise.
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The columns of AN form an integer basis for CN . But
notice that many of the columns do not represent an integer
number of periods of cq(n). So the columns of AN are not or-
thogonal. In the next section we shall introduce another way
to represent an FIR sequence as a finite sum of Ramanujan
sums, which is more elegant in some ways. Notice inciden-
tally that the recursion (13) yields an inductive proof, without
requiring the use of Möbius functions, that cq(n) is an inte-
ger (the basis of induction being that c1(n) is obviously an
integer).

4. A NEW RAMANUJAN REPRESENTATION FOR
FIR SEQUENCES

The representation (8) was not successful because the number
of nonzero α’s is less thanN . In matrix form Eq. (8) becomes

x =
[
cq1 cq2 . . . cqK

]
d (14)

where K is the number of divisors of N . The column cqi has
the elements cqi(n) repeated with period qi until there are N
rows. Since qi is a divisor of N , there are an integer number
(N/qi) of periods in cqi . The matrix has a column space with
dimension K < N , and only those FIR sequences which are
in this column space can be represented. Now instead of using
only one column for each qi, consider using φ(qi) circularly
shifted versions, i.e., for each qi define the matrix

Gqi =
[
cqi c

(1)
qi . . . c

(φ(qi)−1)
qi

]
(15)

where c
(k)
qi represents circular downshifting by k. We will

show below that this matrix has rank φ(qi). Next define the
composite matrix

FN =
[
Gq1 Gq2 . . . GqK

]
(16)

This has N rows and
∑
qi|N φ(qi) columns. But it is well-

known (p. 65, [6]) that∑
qi|N

φ(qi) = N (17)

That is, the sum of the Euler totients, taken over all the di-
visors of N , is precisely equal to N . Thus the matrix FN
is N × N and can serve as a basis for any FIR sequence x
provided it has full rank. Before discussing the rank issue,
let us look at an example. Let N = 6. Then the divisors are
q1 = 1, q2 = 2, q3 = 3, q4 = 6. So the matrix in (14) is

[ c1 c2 c3 c6 ] =


1 1 2 2
1 −1 −1 1
1 1 −1 −1
1 −1 2 −2
1 1 −1 −1
1 −1 −1 1

 (18)

which is only 6×4. But since φ(q1) = 1, φ(q2) = 1, φ(q3) =
2, φ(q4) = 2, we have

F6 =


1 1 2 −1 2 1
1 −1 −1 2 1 2
1 1 −1 −1 −1 1
1 −1 2 −1 −2 −1
1 1 −1 2 −1 −2
1 −1 −1 −1 1 −1

 (19)

which is a 6× 6 matrix indeed. We now prove the following:

Theorem 1. The matrix FN has full rank N . ♦
Proof. Since qi|N , each column in (16) has an integer

number of periods of cqi(n). So, in view of the orthogonal-
ity property (5), the column space of Gqi is orthogonal to
that of Gqk for i 6= k. So it only remains to prove that the
φ(qi) columns in each Gqi are linearly independent. With eq

denoting the vector with the q samples of cq(n), and w
(k)
q de-

noting the kth column of the q × q DFT matrix, we can write
eq =

∑
iw

(ki)
q where (ki, q) = 1 and 1 ≤ ki ≤ q. Thus[

eq e
(1)
q . . . e

(φ(q)−1)
q

]
=

[
w

(k1)
q w

(k2)
q . . . w

(kφ(q))
q )

]
︸ ︷︷ ︸

W1

U (20)

where U is a φ(q) × φ(q) submatrix of the q × q DFT ma-
trix, obtained by retaining the first φ(q) columns, and the
φ(q) rows whose indices are coprime to q. Since U has Van-
dermonde rows

[
1 W ki W 2ki . . .

]
, and since W ki are

distinct for different i, U has rank φ(q). And since W1 is a
submatrix of the DFT with φ(q) columns it has rank φ(q). So
the product in Eq. (20) has rank φ(q). So we have proved
that in Eq. (16) the first φ(qi) rows of each Gqi are linearly
independent. So each Gqi has rank φ(qi) indeed. 555

We have therefore shown that any N × 1 vector x can be
represented in the form

x = FNb (21)

where the N × N matrix FN is defined in terms of the Ra-
manujan sums cqi as described above. Thus FN defines an
integer basis for CN . Summarizing, we have proved:

Theorem 2. Any length N sequence can be represented as
a linear combination of the form

x(n) =
∑
qi|N

φ(qi)−1∑
l=0

βilcqi(n− l)︸ ︷︷ ︸
xqi (n)

(22)

where cqi(n) are Ramanujan sums. ♦

By (17), the total number of terms in the double summation
(22) is precisely N. The inner sum xqi(n) defines a subspace
spanned by the φ(qi) shifted versions cqi(n − l). It will be
called the qith Ramanujan subspace Sqi . This is nothing but
the subspace spanned by the φ(qi) columns of Gqi . Since
the column spaces of Gqi are orthogonal for different qi, the
components xqi(n) are orthogonal projections of x(n) onto
the K Ramanujan subspaces. So, the theorem says that any
FIR x(n) can be decomposed into a sum ofK orthogonal Ra-
manujan projections where each projection xqi(n) is a linear
combination of φ(qi) uniformly shifted versions of the integer
sequences cqi(n).

It can be shown that the DFT expansion of x(n) can be
rearranged as x(n) =

∑
qi|N

∑
(k,qi)=1 γqi,kW

kn
qi , which is
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similar to (22). However, unlike the DFT, the Ramanujan ma-
trices AN and FN have real integer coefficients, so all the
computations can be performed by addition and subtraction of
the samples in x(n). Since there are φ(q) terms in (4), cq(n)
are “reasonably small,” i.e., |cq(n)| ≤ φ(q) < q. Notice also
that N is not restricted as in other integer transforms such as
the Hadamard transform.

An application. One past motivation [10] for using the
original Ramanujan representation (Eqs. (2) and (3)) was that
it tended to highlight the periodicities in a signal. However,
as we showed in Sec. 3, the use of (3) cannot yield a cor-
rect representation for arbitrary FIR sequences. But if we use
the representation in (22), we can prove the following results
[16]: (a) The orthogonal projection xqi(n) has period exactly
equal to qi. (b) Among all the projections xqi(n) suppose the
nonzero ones are xqik (n) for 1 ≤ k ≤ Kz (Kz ≤ K). Then
x(n) has periodicity exactly equal to the lcm of these qik .
Thus the representation allows us to identify the exact period-
icity, by identifying the integers qik corresponding to nonzero
projections. More importantly, it is shown in [16] that the pro-
jections xqi(n) can themselves be computed by integer opera-
tions (add and subtract operations) on (the possibly complex)
x(n). Eq. (22) performs a periodicity transform [13]. We call
it the Ramanujan Periodicity Transform or RPT.

Example 1. Fig. 1(a) shows an FIR signal x(n) with
N = 28 points. Within its support, x(n) is periodic with
period 26 = 64 (a divisor of N ). Figure 1(b) shows the
Ramanujan coefficients ak (absolute values) in the expansion
(11). The plot does not reveal anything about the period 64.
Next consider the new representation (22) (equivalently (21)).
Since N = 28, the divisors are all the powers of 2 up to 28.
So the 9 Ramanujan subspaces are S2k where 0 ≤ k ≤ 8. Fig.
1(c) shows the coefficients bk (absolute values) in the expan-
sion (21) (or equivalently βil in appropriate order), and Fig.
1(d) shows the energies of the projections xqi in (22). The
projection are zero for S28 and S27 . So the only nonzero pro-
jections are x2k , 0 ≤ k ≤ 6. Since the lcm of these divisors
with nonzero projections is 26, it follows that the period is
26 = 64 indeed. So, the new Ramanujan decomposition can
be used to identify periodic components in FIR sequences.
The DFT of x(n) (not shown) can in principle reveal that x(n)
has period 64 (since X[k] is nonzero only when k is a multi-
ple of 4 (= N/64)), but the plots in Fig. 1(c), (d) are more
direct, and can be obtained with integer transforms.

5. CONCLUDING REMARKS

The traditional way of expanding a signal using Ramanujan
sums does not work in the FIR case. In this paper we devel-
oped a new way to do this decomposition. Using this, any
length-N signal x(n) can be decomposed as a sum of orthog-
onal projections into spaces Sqi each representing a periodic
component xqi (where qi are divisors of N ). Many issues re-
main to be analyzed such as complexity, the case where peri-
ods are not divisors ofN , and the presence of noise. Connect-
tions to dictionary based approaches (see [15] and references
therein) will be explored in future.
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Fig. 1. Example 1. (a) The 256-point FIR signal x(n) with period
64. (b) The Ramanujan coefficients ak (absolute values) correspond-
ing to the basis AN . (c) The Ramanujan coefficients bk (absolute
values) corresponding to the basis FN (the representation (22)). (d)
Energies of the orthogonal projections xqk into the Ramanujan sub-
spaces Sqk .
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