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ABSTRACT

This paper presents a systematic approach to block processing with
iterative correction filters for time-interleaved analog-to-digital con-
verters (TI-ADCs). TI-ADCs consist of several channels and can
significantly increase the achievable sampling rate, but suffer from
mismatches among the channels. Iterative digital correction filters
are a general approach to mitigate the impact of mismatches in TI-
ADCs. To reduce the requirements on the digital hardware, we intro-
duce block processing for such filters. To this end, the transforma-
tion of a single-input single-output linear time-varying (LTV) finite
impulse response filter into a multiple-input multiple-output LTV fil-
ter is described as a design equation and applied to two representa-
tive iterative correction structures from the literature. Finally, the
beneficial properties and advantages of the transformation are high-
lighted.

Index Terms— time-varying filter, block processing, MIMO,
Farrow structure, mismatch correction, time-interleaved ADC.

1. INTRODUCTION

The significant demand for high-speed analog-to-digital converters
(ADCs) gave rise to time-interleaved ADCs (TI-ADCs) [1]. TI-
ADCs comprise M parallel channel ADCs operating at the rate
fs/M , which are time-interleaved to yield samples of the input
signal at the rate fs. Hence, compared to a single channel ADC,
the output rate can be increased by a factor of M , but mismatches
among the channels and clock skew can significantly degrade the
performance [2]. Especially for medium and high-resolution TI-
ADCs, the problem of impaired signals due to mismatches cannot
be solved by analog design, but requires digital postprocessing [1].
Ideally, these postprocessing filters have a low implementation com-
plexity as well as a low design complexity. The implementation
complexity is the computational effort to operate the filter, e.g., the
number of taps and the associated numbers of multiplications and
additions, and the design complexity is the computational effort
to compute the coeffcients with respect to the mismatches. The
best trade-off between the implementation and design complexity
depends on the application of the TI-ADC. In many cases, for ex-
ample, where the correction filter is part of a blind identication and
correction procedure, the design complexity outweighs the imple-
mentation complexity [3]. It is also desirable to have multiple-input
multiple-output (MIMO) polyphase correction filters, which accept
the direct output of the channel ADCs as a block of input samples
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Fig. 1. TI-ADC followed by a MIMO correction filter. The multi-
plexing of the output samples is visualized via a commutator [19].

and work at an M -times lower rate fs/M as illustrated in Fig. 1, as
they mitigate the speed requirements on the hardware and enable the
use of more power and area efficient multipliers as shown in [4].

2. CONTRIBUTIONS AND RELATION TO PRIOR WORK

Many methods to correct mismatches have been proposed [5–18].
The correction methods either exhibit a high design complexity for
changing mismatches [17, 18], do not utilize the advantages of a
MIMO polyphase implementation by performing the correction on
the full rate signal [5–7], or suffer from both [6, 7]. For particu-
lar mismatches such as time offsets, customized MIMO correction
filters have been presented [14–16], which exploit the advantages
of polyphase filtering and can adapt the coefficients with rather low
complexity. A general concept for mismatch correction with low
design complexity are iterative correction structures [8–13]. How-
ever, they have been established as single-input single-output (SISO)
systems and, thus, lack the advantages of a MIMO polyphase im-
plementation. In this paper, we introduce a systematic approach to
obtain a MIMO polyphase implementation of iterative correction fil-
ters. To this end, a design equation for the structure of a MIMO LTV
finite impulse response (FIR) filter is introduced, which utilizes the
concepts in [20] to obtain a generalization of the design equation for
block processing with linear time-invariant (LTI) FIR filters in [21]
that maintains the same simplicity. The design equation is utilized
to exemplify the transformation of SISO iterative correction filters
to MIMO iterative correction filters by means of two representative
structures, i.e., an iterative correction filter based on the Richardson
iteration [13] and a correction filter for the reconstruction of nonuni-
form samples, the differentiator-multiplier cascade [8]. Therewith,
the entire class of iterative correction filters [8–13] can utilize the
advantages of a MIMO polyphase implementation as well.
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Fig. 2. Interchange of a time-varying multiplier λn, where n denotes
the time dependence, and a delay element z−1, which delays the
signal by one sample [20].

3. DESIGN EQUATION FOR A MIMO LTV FILTER

This section establishes a design equation for a MIMO LTV filter
that corresponds to a given SISO LTV filter by using the concepts
presented in [20]. In the subsequent section, this design equation is
utilized to attain block processing with iterative correction filters.

3.1. SISO LTV Filter and Notation

The output signal y[n] of a SISO LTV filter can be described by the
convolution of the input signal x[n] with the time-varying impulse
response hn[k], i.e.,

y[n] =

∞∑
k=−∞

hn[k]x[n− k] .

Since the conventional z-transform is not defined for a time-varying
filter, it is defined here as the z-transform of the filter “frozen” at
time instant n [20], i.e.,

Hn(z) =
∞∑

k=−∞

z−khn[k] . (1)

It should be pointed out that delay elements and time-varying mul-
tipliers may not be interchanged without further consideration as in
the time-invariant case, but the time dependency needs to be taken
into account as well [20], cf. Fig. 2. In order to keep the underly-
ing structure transparent in the z-domain, a refined notation is in-
troduced. It is defined that the order of terms in equations in the
z-domain corresponds to the structure of the underlying filter, i.e.,
a delay preceding a time-varying multiplier or LTV filter is written
to its left, whereas a delay following it is written to its right. This
implies that delay elements, LTV filters and time-varying multipliers
do not commute under multiplication in the z-domain, but the rule
in Fig. 2 must be respected. Furthermore, this concept of notation is
extended to the z-transform of filters, i.e., FIR filters with the delay
chain at the input (direct form) are denoted by writing the z to the
left, as in (1), whereas FIR filters with the delay chain at the output
(transposed form) are denoted by writing the z to the right [20].

3.2. Derivation of the Design Equation

A linear M -periodically time-varying filter may be represented as a
time-invariant maximally decimated M -channel filter bank by pro-
cessing M subsequent samples in parallel using the corresponding
impulse responses and time-interleaving the results using decimators
and expanders [19]. The same concept may as well be applied to a
SISO LTV filter as depicted in Fig. 3, where, however, the resulting
structure remains time-varying. Therein, the filters are followed by a
decimator and a polyphase decomposition may be applied [19]. In
order to keep the derivation as simple as possible, the interchange of
time-varying multipliers and delay elements is avoided by assuming
Hn(z) to be a direct form LTV FIR filter. For transposed form LTV
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Fig. 3. SISO LTV filter in multirate representation (cf. [19]).

FIR filters, the derivation may be pursued similarly, but the rule for
interchanging time-varying multipliers and delay elements in Fig. 2
must be respected. Given this assumption, the M -fold polyphase
decomposition of Hn(z) in (1) is given by [20]

Hn(z) =
M−1∑
l=0

z−lH̃(l)
n (zM ) (2)

where the polyphase components are

H̃(l)
n (zM ) =

∞∑
k=−∞

z−Mkhn[Mk + l] .

The output of the filter Hn−q(z) in channel q is identified as

Vq(z) = X(z)z−qHn−q(z)

where q = 0, . . . ,M − 1, cf. Fig. 3. The application of (2) yields

Vq(z) =
M−1∑
l=0

X(z)z−(q+l)H̃
(l)
n−q(z

M ) (3)

where z−q and z−l were combined as both precede the filter
H̃

(l)
n−q(z

M ). In order to move the M -fold decimator in front of the
filter H̃(l)

n−q(z
M ),1 it is applied to Vq(z). Decimation is described in

the z-domain by [19]

Yq(z) =
[
Vq(z)

]
↓M

=
1

M

M−1∑
r=0

Vq(z1/MW r
M ) (4)

where WM is the M th root of unity, i.e., WM = e−2π/M . How-
ever, using (3) in (4) is not straightforward, as (4) is only capable of
describing the implications in the z-domain and obscures the impact
on the time-domain. Besides retaining only every M th sample and
discarding the ones in between, which is well described by (4), the
decimator further changes the time index from n before the decima-
tor to m after the decimator, where one time step in m corresponds
toM time steps in n, cf. Fig. 3. Taking this into account, theM -fold
decimation of H̃(l)

n (zM ) leads to the polyphase components

H
(l)
Mm(z) =

∞∑
k=−∞

z−kh(l)
Mm[k] (5)

1Note that this corresponds to the Noble identity 1 [19] for LTV filters.
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Fig. 4. 2-channel MIMO iterative correction filter based on the Richardson iteration. The 2-channel MIMO LTV filters are depicted in Fig. 5.
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Fig. 5. 2-channel MIMO LTV filter associated with a direct form
SISO LTV FIR filter Hn(z). The subfilters in the MIMO LTV filter
are direct form FIR filters.

with the corresponding impulse responses

h
(l)
Mm[k] = hn[Mk + l]

∣∣∣
n = Mm

where the change in the time index (n → Mm) and extraction of
every M th sample (zM → z) is respected. Considering these par-
ticularities, (3) may be used in (4), and in conjunction with (5) this
results in

Yq(z) =
M−1∑
l=0

[
X(z)z−(q+l)

]
↓M
H

(l)
Mm−q(z) (6)

where it was recognized that the input to the filters H(l)
Mm−q(z) are

time-shifted and decimated versions of the input signal. For a MIMO
LTV filter, the input x[n] is provided in blocks of M samples, thus
the channel input signals are identified as xr[m] = x[Mm−r] with
the corresponding z-transform

Xr(z) =
[
X(z)z−r

]
↓M

where r = 0, . . . ,M − 1. In order to map the channel inputs to the
time-shifted and decimated input signals in (6), the delay z−(q+l) is
considered, which is between z−2(M−1) and z0 due to the range of q
and l. A comparison of [X(z)z−(q+l)]↓M to the definition of Xr(z)
reveals that it equalsXq+l(z) if q+ l ≤M−1 andXq+l−M (z)z−1

if q + l > M − 1. Consequently, (6) can be expressed in terms of
the channel input signals Xr(z) as

Yq(z) =
M−1∑
l=0

X〈q+l〉M (z)z−b(q+l)/McH(l)
Mm−q(z) (7)

where b·c denotes the floor function and 〈k〉M denotes the modulo
operation, i.e., 〈k〉M = k modM . Eq. (7) specifies the output of
channel q, i.e., Yq(z), in terms of the channel input signals Xr(z)
and, therefore, can be regarded as a design equation for the struc-
ture of the MIMO LTV filter associated with the corresponding di-
rect form SISO LTV FIR filter. Indeed, (7) is a reformulation of the

u[n]
Hn(z) Hn(z) Hn(z)

x̂[n]

Fig. 6. Iterative correction filter based on the Richardson iteration.

polyphase matrix in [20] and the generalization of the design equa-
tion for LTI filters in [21] to time-varying filters. It should be pointed
out that the delay chain at the output in Fig. 3 is acausal and, there-
fore, not realizable. This stems from the dependence of the output
block on the input block, thus a delay of z−M+1 is mandatory in a
practical system.

The MIMO LTV filter described by (7) is shown in Fig. 5 for
M = 2. Note that the design equation (7) can be readily applied
to correction structures based on adaptive direct form FIR filters,
e.g., [5], and to linearM -periodically time-varying direct form SISO
FIR filters, e.g., explicitly designed correction filters [6, 7].

4. ITERATIVE CORRECTION FILTERS

Iterative correction filters comprise a cascade of correction stages,
where the error caused by the mismatches is reduced in every stage.
Some of these correction filters are based on iterative methods
known from computational mathematics, e.g., the Richardson itera-
tion is utilized in [11, 13] and the Gauss-Seidel iteration is applied
in [12], whereas others are derived explicitly, e.g., [8–10]. Using
the design equation presented in Section 3, block processing with
such structures may be directly accomplished. In favor of a compact
discussion, this procedure is exemplified by means of two repre-
sentative iterative correction filters. Based on this background, the
extension to other iterative correction filters is rather straightforward.

4.1. Richardson Iteration

The SISO iterative correction filter presented in [13] is based on the
Richardson iteration without relaxation and exhibits the fundamental
structure depicted in Fig. 6, in which Hn(z) is a SISO LTV filter. If
Hn(z) is a direct form FIR filter, the design equation (7) is directly
applicable and provides the structure of the corresponding MIMO
LTV filter. Therewith, the stages only need to be connected accord-
ingly to obtain the MIMO iterative correction filter as illustrated in
Fig. 4 for M = 2.

If the filter Hn(z) delays the signal, corresponding delays need
to be inserted into the SISO iterative correction filter as discussed
in [13]. When this filter is transformed to a MIMO iterative cor-
rection filter, these delays must be implemented with block process-
ing in mind. Assuming the signal should be delayed by D samples,
then it suffices to delay all channel signals by D/M samples if D
is a multiple of M , i.e., 〈D〉M ≡ 0. However, if 〈D〉M 6= 0, the
channels need to be cross-connected to realize the delay, i.e., to de-
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Fig. 7. SISO DMC with 2 stages, in which Hd(z) is an ideal
discrete-time differentiator and λn is the time-varying sampling time
error in fractions of the sampling period.

Table 1. Polynomial Filters of the DMC Stages

B0(z) B1(z) B2(z)

Stage 1 0 −Hd(z) 0

Stage 2 0 −Hd(z) −H2
d(z)/2

lay the signal in channel q by D samples involves delaying it by
b(q +D)/Mc samples and connecting it to the channel 〈q +D〉M
of the subsequent structure.

4.2. Differentiator-Multiplier Cascade

The differentiator-multiplier cascade (DMC) introduced in [8] is an
iterative correction filter for timing mismatch correction based on
a Taylor series expansion. A DMC with two stages is illustrated
in Fig. 7, which realizes a Richardson iteration with reconstruction
filters Hn(z) of increasing complexity. The structure of the stages
can be identified as Farrow filters [22], which are linear FIR filters
with a free parameter λn and utilized in various correction filters [8,
10–12]. The variation of the impulse response coefficients hn[k]
with respect to λn is approximated with polynomials of degree P ,
i.e.,

hn[k] =

P∑
p=0

bp[k]λ
p
n . (8)

Therein, the subscript n denotes the dependence on the time index
n and bp[k] are the coefficients of the polynomial for the coefficient
hn[k]. In case of the DMC, the stages are Farrow filters with P = 2
and the polynomial filters given in Table 1. By applying (5), the
polyphase components after decimation are given by

H
(l)
Mm(z) =

P∑
p=0

B(l)
p (z)λpMm (9)

where the polyphase components are

B(l)
p (z) =

∞∑
k=−∞

z−kb(l)p [k]

with the corresponding impulse responses b(l)p [k] = bp[Mk + l].
Using (9) in the design equation (7) yields the description of an M -
channel MIMO Farrow filter. The resulting structure is illustrated
in Fig. 8 for M = 2 and P = 2. As the stages of the DMC are
connected according to Fig. 6, the two stages of the considered 2-
channel MIMO DMC are connected as in Fig. 4, where the filters in
the stages are 2-channel MIMO Farrow filters as shown in Fig. 8.
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Fig. 8. 2-channel MIMO Farrow filter with P = 2.

5. DISCUSSION

The MIMO filters obtained with the proposed approach comprise ex-
actly M times the multipliers and adders of the corresponding SISO
filters. Therefore, the number of arithmetic operations per unit time
remains constant under the transformation, which implies that no
computational overhead is introduced. Due to the transformation,
the system rate of the correction filter is reduced by a factor of M ,
which mitigates the speed requirements on the hardware and enables
the use of more power and area efficient multipliers as shown in [4].
Furthermore, the individual subfilters in the MIMO filter described
by (7) comprise only 1/M th of the corresponding SISO LTV FIR fil-
ter coefficients and, as the transformation places at maximumM−1
adders between the subfilters and the channel outputs, the critical
path [21] is reduced as well if the order of the direct form SISO LTV
FIR filter is at least M .

6. CONCLUSION

In this paper, a systematic approach to block processing with itera-
tive correction filters for TI-ADCs was presented. To this end, a de-
sign equation for a MIMO LTV filter was introduced, which permits
block processing with direct form SISO LTV FIR filters for an arbi-
trary block length M . Using this design equation, block processing
with iterative correction filters was introduced via the discussion of
two representative structures, where the extension to other iterative
correction filters is rather straightforward. Therewith, the class of it-
erative correction filters does not only exhibit a low design complex-
ity, but can also take advantage of the benefits of a MIMO polyphase
implementation.
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