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ABSTRACT
We explore the problem of deterministically constructing
frames and matrices with low coherence, which arises in ar-
eas such as compressive sensing, spherical codes, and MIMO
communications. In particular, we present a generalization of
the familiar harmonic frame by selecting a subset of rows of
the generalized discrete Fourier transform matrix over finite
groups. We apply our methods to the group SL2(Fq) and
show how to produce frames with remarkably low coherence,
for which we provide upper bounds.

Index Terms— Coherence, frame, unit norm tight frame,
group representation, special linear group, spherical codes,
compressive sensing.

1. INTRODUCTION AND PREVIOUS WORK

Let M ∈ Cm×n be a complex matrix with columns {fi}ni=1

which form a frame. The frame is called tight if MM∗

is a scalar multiple of the identity Im, and equiangular if
|〈fi, fj〉| = α for some constant α and all i 6= j. We will typ-
ically take our frames to be unit norm: ||fk||2 = 1,∀k. The
coherence µ of M to be the maximum correlation between
any two distinct columns:

µ = max
i 6=j

|〈fi, fj〉|
||fi||2 · ||fj ||2

. (1)

If a frame is both tight and equiangular, then it achieves
the following lower bound on coherence, known as the Welch
bound [13]:

Theorem 1 Let E be a field, and {fk}nk=1 be a frame for Em.
Then

max
i 6=j

|〈fi, fj〉|
||fi||2 · ||fj ||2

≥
√

n−m
m(n− 1)

, (2)

with equality if and only if {fk}nk=1 is both tight and equian-
gular.
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Designing matrices and frames with low coherence is a
problem that has applications arising in a wide range of fields,
including compressive sensing [3–8], spherical codes [10,13],
MIMO communications [11,12], quantum measurements [14,
15], etc.

The study of frames is also interesting in its own right
and has received substantial attention in both engineering and
applied math communities (see [17–19]). Much prior work
has been done in studying structured frames, including some
which are tight and/or equiangular [13, 20, 21] and several of
these have employed group theoretic methods [1, 16, 22].

In general, tight equiangular frames do not exist for all
values of m and n, but it can be shown that if there is a small
number of inner product magnitudes between the elements of
a tight frame, then it will tend to have low coherence. Thus, it
is of interest to construct tight frames with few mutual inner
products between the elements.

In our previous work [23, 24], we developed methods of
constructing a harmonic frame by choosing a subset of m
rows of the n × n discrete Fourier transform matrix, so that
our frame takes the form

M =
1√
m


1 ωk1 ωk1·2 . . . ωk1·(n−1)

1 ωk2 ωk2·2 . . . ωk2·(n−1)

...
...

...
. . .

...
1 ωkm ωkm·2 . . . ωkm·(n−1)

 (3)

where ω = e
2πi
n , ki ∈ {0, 1, ..., n − 1}, and we have

normalized the columns. If we index the columns by ` ∈
{0, 1, ..., n − 1}, then the inner product between the `th1 and
`th2 columns takes the form

1
m

m∑
i=1

(ωki`1)∗ωki`2 =
1
m

m∑
i=1

ω(`2−`1)·ki .

Thus, there is one inner product value for every choice of ` ≡
`2 − `1 mod n (here, ` ≡ 0 corresponds to taking the inner
product of a column with itself). Thus we can write our inner
products of distinct columns as

1
m

m∑
i=1

ω`·ki , ` = 1, 2, ..., n− 1.
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We proposed the following scheme: Take n to be a prime
so that the nonzero integers {1, ..., n−1} form a cyclic group
under modulo n multiplication, denoted (Z/nZ)×. We then
take m to be a divisor of n − 1. Since it is cyclic, (Z/nZ)×

contains a unique cyclic subgroup of size m, and we choose
the integers {ki} to be the elements of this subgroup. We
proved the following bounds on coherence:

Theorem 2 If n is prime, m a divisor of n − 1, and {ki}
the unique subgroup of (Z/nZ)× of size m, then setting ω =
e

2πi
n , r := n−1

m and µ := max`∈{1,...,n−1}
1
m

∣∣∑m
i=1 ω

`ki
∣∣,

µ ≤ 1
r

(
(r − 1)

√
1
m

(
r − 1

m

)
+

1
m

)
. (4)

If m is odd,

µ ≤ 1
r

√(
1
m

+
(r

2
− 1
)
β

)2

+
(r

2

)2

β2, (5)

where β =
√

1
m

(
r + 1

m

)
.

In practice, these bounds come very close to the Welch bound.

2. GENERALIZED GROUP FOURIER TRANSFORM

We can now hope to generalize these results in the following
manner: If we consider the (scaled) ith row of the matrix M
in (3) above,[

1 ωki ωki·2 . . . ωki·(n−1)
]
,

this corresponds to an irreducible unitary representation of
the cyclic group of n elements (denoted Z/nZ, the integers
{0, 1, ..., n − 1} under addition modulo n). In this case, the
representation (call it ρ) simply maps

` 7→ ρ(`) := ω`ki

for every ` ∈ {0, 1, ..., n − 1}. One easily checks that this is
a well-defined representation:

ρ(`1 + `2) = ω(`1+`2)ki = ω`1ki · ω`2ki = ρ(`1)ρ(`2).

As long as the integers ki are unique modulo n, the rows of
M correspond to inequivalent irreducible representations of
Z/nZ.

It turns out that this interpretation of a harmonic frame
can be extended by using representations of groups other than
Z/nZ. In particular, let G be a finite group with nr inequiva-
lent, irreducible representations, ρ1, ..., ρnr , with correspond-
ing degrees d1, ..., dnr . Recall that a representation ρ of de-
gree d is a function ρ : G → GL(V ), where V is a d-
dimensional complex vector space, such that

ρ(g1 · g2) = ρ(g1) · ρ(g2), ∀g1, g2 ∈ G.

In other words, the ρ(gi) are invertible d × d matrices, and
the group operation is replaced by matrix multiplication. ρ is
irreducible if the ρ(gi) do not simultaneously fix any nontriv-
ial subspace of V (ie, the matrices ρ(gi) cannot be simulta-
neously block-diagonalized). Two representations ρ1 and ρ2

are equivalent if there is an invertible linear transformation
T such that ρ1(g) = Tρ2(g)T−1, ∀g ∈ G (ie, they are si-
multaneously similar as matrices), and they are inequivalent
otherwise. Furthermore, it can be shown that every repre-
sentation is equivalent to a unitary representation, in which
ρ(g)∗ = ρ(g)−1 (= ρ(g−1)) for all g (ie, every ρ(g) can be
represented as a unitary matrix). Thus, we will assume that
all of our representations are unitary without loss of general-
ity. More thorough descriptions of these results can be found
in [25, 26].

Representation theory teaches us that for any finite group
G, there are finitely many inequivalent irreducible represen-
tations whose degrees satisfy

d2
1 + ...+ d2

nr = |G|. (6)

It should be clear from the definitions that any representation
ρ of G can be uniquely decomposed into a direct sum of ir-
reducible representations by a similarity transformation (up
to isomorphism), though in general these irreducible compo-
nents need not be inequivalent.

Now, just as we selected the rows of M in (3) to be scaled
rows of the discrete Fourier matrix, we can create a more gen-
eral class of frames by selecting a subset of rows of the gen-
eralized group Fourier transform matrix:

F =


√
d1vec(ρ1(g1)) . . .

√
d1vec(ρ1(gn))√

d2vec(ρ2(g1)) . . .
√
d2vec(ρ2(gn))

...
. . .

...√
dmvec(ρm(g1)) . . .

√
dmvec(ρm(gn))

 (7)

where |G| = n, g1, ..., gn are the distinct elements of G, and
ρ1, ..., ρm are inequivalent, irreducible representations of G.
Note that the columns of F have not been normalized, but we
shall see that each one has norm

√∑m
i=1 d

2
i .

Note that the matrix F has dimensions
(∑m

i=1 d
2
i

)
× n.

When all of the inequivalent irreducible representations are
used (m = nr), giving us the full group Fourier transform
matrix, then (6) clearly tells us that F will be a square matrix.
And indeed, if G = Z/nZ so that gj is simply the integer j,
ρi the function which maps j 7→ ωij , and di = 1, ∀i, then we
recover our original DFT matrix whose rows form M in (3).
Furthermore, it can be shown using elementary representation
theory that the columns of F form a tight frame. (In other
words, the rows in (7) are orthonormal).

The inner product between the ith and jth columns of F
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Table 1. Character Table of SL2(Fq), q even

Class Representative:
[
1 0
0 1

] [
1 1
0 1

] [
a 0
0 a−1

]
B

[
s 0
0 s−1

]
B−1

No. of such classes: 1 1 1
2 (q − 2) 1

2q
Size of class: 1 q2 − 1 q(q + 1) q(q − 1)

1G 1 1 1 1
StG q 0 1 −1
ρχ q + 1 1 χ(a) + χ(a−1) 0
πη q − 1 −1 0 −η(s)− η(s−1)

can be written as follows:

k∑
t=1

dtvec(ρt(gi))∗vec(ρt(gj)) =
k∑
t=1

dtTr(ρt(gi)∗ρt(gj)) (8)

=
k∑
t=1

dtTr(ρt(g−1
i gj)) =

k∑
t=1

dtχt(g−1
i gj). (9)

Thus, as in the standard Fourier case, the inner product be-
tween the ith and jth columns does not depend on gi and gj
individually but rather on the product g−1

i gj = gk. So as be-
fore, we only have at most n − 1 inner products correspond-
ing to each nonidentity group element gk. We remark that
(9) follows from the fact that each ρt is assumed to be a uni-
tary representation. Here, χt(g) = Tr(ρt(g)) is the character
function of G associated to ρt. Character theory is a power-
ful tool in the study of representations, and in fact the char-
acter of a representation completely determines how it will
decompose into irreducible components. For many groups it
is easy to find cataloged tables of the characters of all the in-
equivalent irreducible representations. What we have shown
above is that we can compute the inner products between the
columns of F using only knowledge of the character table of
G. As we will see, this can be very useful in determining
which representations ρ1, ..., ρm to use in constructing F .

There is a strong connection between the characters of G
and its conjugacy classes.

Definition 1 We say that g1 and g2 are conjugate in G, or in
the same conjugacy class, if there is some g3 ∈ G such that
g1 = g3g2g

−1
3 . We call g1 a representative of the conjugacy

class.

Lemma 1 If χ is the character of a representation ρ of G,
and g1 and g2 are conjugate in G, then χ(g1) = χ(g2).

Proof: This follows immediately from the definition
χ(g) = Tr(ρ(g)), and the properties of the trace. �

Corollary 1 The number of distinct values of the inner prod-
ucts between columns of F is equal to the number of conju-
gacy classes of G.

Proof: From Lemma 1 and (9), we see that the inner prod-
uct between the ith and jth columns ofF depends only on the
conjugacy class of g−1

i gj . �

Lemma 2 The the norm of each column of F is
√∑m

i=1 d
2
i .

Proof: The inner product of a column with itself corre-
sponds to taking i = j in (9) above. In this case, g−1

i gj = 1,
the identity element of G. Since ρt(1) is simply the dt × dt
identity matrix, we have χt(1) = Tr(Idt) = dt, and the
squared norm of the ith column is

∑m
t=1 d

2
t . �

3. REPRESENTATIONS OF SL2(FQ)

We will apply the above framework to the case where G =
SL2(Fq), and show how to obtain frames with low coherence.
Let Fq be the finite field containing q elements. Such a field
exists and is unique whenever q is a power of some prime p.
Then SL2(Fq) is the set of 2× 2 determinant-1 matrices with
entries in Fq ,

SL2(Fq) :=
{[
a b
c d

]
| a, b, c, d ∈ Fq, ad− bc = 1

}
.

It is not difficult to check that this is a group containing
|SL2(Fq)| = q(q + 1)(q − 1) elements.

As with many groups, the character table of SL2(Fq) is
well-described. For example, when q is even (q is a power of
2), the characters are shown in Table 1. There are four types
of conjugacy classes in SL2(Fq) for q even, corresponding
to how the matrices diagonalize. The first is simply the iden-

tity matrix,
[
1 0
0 1

]
. The second consists of the matrices that

are not diagonalizable, and have the Jordan canonical form[
1 1
0 1

]
, which is the conjugacy class representative. (Note

how these first two conjugacy classes contain all the matri-
ces with repeat eigenvalues of 1). Each conjugacy class of
the third type has a representative which is a diagonal matrix:[
a 0
0 a−1

]
, where a ∈ Fq \ {0, 1}. No two of these repre-

sentatives are conjugate to each other. The elements of the
fourth type of conjugacy class are those that take the form
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B

[
s 0
0 s−1

]
B−1, where now B ∈ SL2(Fq2) and s ∈ Fq2 is

a norm-1 element of Fq2 \Fq , that is, sq+1 = 1. This happens
when the characteristic polynomial of the matrix has no solu-
tion in Fq . Note that here Fq2 is the finite field of q2 elements,
which contains Fq as a subfield. As in the previous case, there
is a distinct conjugacy class for each such s.

Likewise, there are four types of characters of SL2(Fq)
for q even. We will omit the descriptions of the represen-
tations to which they correspond, but they can be found in
[27–29] The first is the character of the identity representa-
tion, 1G, which maps every element to 1. Its character is the
first shown in Table 1. The second character, shown in the
subsequent row, is that of the Steinberg representation, de-
noted StG. Both of these are degree-1 representations.

The third and fourth types of characters in the final two
rows of the table are more interesting. The third corresponds
to what is called an induced representation, denoted here as
ρχ. This representation has degree q + 1, but is built from a
nontrivial degree-1 representation χ of the group F×q . Here,
F×q denotes the set of nonzero elements of Fq , which form a
group under multiplication. This group happens to be cyclic
of size q − 1, generated by the powers of some nonzero ã ∈
Fq . Thus, if ω− = e

2πi
q−1 , then χ will be the function χ(ã`) =

ωk`− , for some k ∈ {1, 2, ..., q − 2}. (It is required that k 6≡ 0
mod q − 1 for this representation to be irreducible).

The fourth and final type of character is that of a degree-
(q − 1) cuspidal representation, denoted πη . This is actually
constructed from a degree-1 representation η of the group of
norm-1 elements of Fq2 , which is a multiplicative group of
size q + 1. This group is again cyclic. If we let s̃ be a gen-
erator, so that every norm-1 element is written as a power of
s̃, then η(s̃`) = ωh`+ , where ω+ = e

2πi
q+1 and h ∈ {1, 2, ..., q}.

(Again, we require h 6≡ 0 mod q + 1 for irreducibility).

4. FRAMES FROM INDUCED AND CUSPIDAL
REPRESENTATIONS

We can now use our previous results from Theorem 2 to con-
struct frames in the form ofF in (7) with low coherence using
the representations of SL2(Fq) for q even. We begin by using
only the induced representations. For convenience, we will
write ρk for the representation ρχ where χ(ã) = ωk−. Now
consider choosing q such that n = q − 1 is a prime, and take
m to be a divisor of n−1. As before, we would intuitively like
to choose the setK = {k1, ..., km} to be the unique subgroup
of (Z/nZ)× of size m, and then use the representations ρki
to construct F . However, notice from Table 1 that the char-
acters corresponding to ρk and ρ−k are the same (where −k
is taken modulo n), indicating that they are equivalent repre-
sentations. This follows from the fact that if χk(ã) = ωk− and
χ−k(ã) = ω−k− , then

χk(ã`) + χk(ã−`) = ωk`− + ω−k`− = χ−k(ã−`) + χ−k(ã`).

Therefore, if −1 is contained in the unique subgroup of
(Z/nZ)× of size m, we must choose K slightly differently.

Lemma 3 For n prime, m dividing n− 1, the unique size-m
subgroup Km of (Z/nZ)× contains −1 if and only if m is
even. In this case, m/2 is odd, and Km = Km/2 ∪ −Km/2

where Km/2 is the unique size-m2 subgroup.

Theorem 3 Take q a power of 2 such that n = q−1 is prime,
and let m be an odd divisor of n − 1 and r = n−1

2m . Let
K = {k1, ..., km} be the unique subgroup of (Z/nZ)× of size
m, and form F from the induced representations ρki . Then
the coherence µF of F is bounded by

1
q + 1

max

(
1,

1
r

(
(r − 1)

√
1

2m

(
r − 1

2m

)
+

1
2m

))
.

(10)

Proof: From (9) and Table 1, we see that the only nontriv-
ial inner products are those corresponding to the conjugacy

classes represented by u :=
[
1 1
0 1

]
and w` :=

[
ã` 0
0 ã−`

]
for ` ∈ {1, ..., q − 2}. These inner products are

m∑
i=1

diχρki (u) = m(q + 1), (11)

m∑
i=1

diχρki (w`) =
m∑
i=1

(q + 1) · (χki(ã`) + χki(ã
−`)) (12)

= (q + 1)
m∑
i=1

(ω`ki− + ω−`ki− ). (13)

From Lemma 3, we can bound (13) using Theorem 2. The
final result is then scaled after normalizing the columns by√
m(q + 1)2, which we obtain from Lemma 2. �

We remark that we can obtain similar results using a par-
allel construction of F with only cuspidal representations,
which works when q + 1 is prime.

5. CONCLUSION

For fixed parameter r in Theorem 3, our frames’ coherences
asymptotically approach the Welch bound (2). Table 2 shows
that even for relatively small dimensions our frames tend to
have significantly lower coherence than random Gaussian
frames. We are now exploring our framework in new groups.

Table 2. SL2(Fq) vs. Gaussian Frame Coherences
Frame Dimensions SL2(Fq) Random Gaussian

25× 60 .2000 .5214
81× 504 .2002 .3482
243× 504 .1111 .2274
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