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ABSTRACT

In this paper, we introduce a novel method of smoothing language
models (LM) based on the semantic information found in on-
tologies that is especially adapted for limited-resources language
modeling. We exploit the latent knowledge of language that is
deeply encoded within ontologies. As such, this work examines
the potential of using the semantic and syntactic relations be-
tween words from the WordNet ontology to generate new plausi-
ble contexts for unseen events to simulate a larger corpus. These
unseen events are then mixed-up with a baseline Witten-Bell (WB)
LM in order to improve its performance both in terms of language
model perplexity and automatic speech recognition word error
rates. Results indicate a significant reduction in the perplexity of
the language model (up to 9.85% relative) all the while reducing
word error rate in a statistically significant manner compared to
both the original WB LM and baseline Kneser-Ney smoothed lan-
guage model on the Wall Street Journal-based Continuous Speech
Recognition Phase II corpus.
Keywords: Language modeling, context modeling, ontologies,
low-resource speech recognition

1. INTRODUCTION

Language modeling is an integral part of the speech recogni-
tion task where the purpose is to try to reliably predict what
the speaker is most likely to say next. Today, n-gram language
modeling remains the dominant technique in automatic speech
recognition applications. Formally, we compute the probability
of word w = wn given its history or context h : P (w |h) where
h = wn−1, wn−2, ..., wn−N is obtained from counts of very large
textual corpus. However, this is not always convenient or practi-
cally achievable since new sentences are constantly being created
[1]. For example it would be impossible to predict a novel sen-
tence, since its count would be zero. In addition, it is easy to see
that as the length of the sentence and/or vocabulary grows, the
task of obtaining those counts becomes impractical. The goal of
n-gram language models then is to simplify the prediction of the
n-th word based on the n−1 previous words using maximum like-
lihood estimates (MLE):

PMLE (wn |h) = C (h, wn )

C (h)
. (1)

Two well-known drawbacks of language modeling with
n-grams are its sensitivity to the corpus and data sparse-
ness, i.e. if we train our model on text from Shake-
speare, it is evident that the model will not be adequate
for the prediction of astrophysical text, namely the count

of the word "magnetohydrodynamics" in a Shakespearian
work C (mag netohydr od ynami csastr ophy si cs |hShakespear e ) is
surely equal to 0. That is why multiple approaches exist to either
obtain better language models (LM) or smooth existing ones in or-
der to improve their statistical accuracy and generalizability. No-
table techniques include discounting, interpolation and various
backoff schemes such as Good-Turing Discounting, Witten-Bell
discounting [2], Modified Kneser-Ney smoothing [3] or Hierarchi-
cal Pitman-Yor language models [4] used to smooth out low-order
counts. Variable length n-grams and class-based n-grams [5] also
enabled better performance of language models. Other work such
as [6, 7, 8, 9] looks into exploiting the vast amount of text avail-
able on the Web and raw n-gram counts such as those provided by
Google.

Although we have made significant leaps in the area there is
still room for progress. This is particularly true in the case where
we don’t have access to training data that relates to the testing or
real-world data or that such resources are limited and/or too ex-
pensive. It is for these reasons that this work mainly focuses on
semantically expanding the information found in small corpus for
smoothing language models.

In this work, we introduce a novel method of smoothing lan-
guage models by exploiting the semantic information found in on-
tologies. It will be used in combination with Witten-Bell smooth-
ing since the intuition behind this smoothing algorithm is to look
at the diversity of contexts in which a particular history occurs:
how likely is it to see a new n-gram given a particular history. This
is especially suited for our n-gram count smoothing algorithm
since one of its goals is to generate a new set of probable n-gram
events that enrich the contextual diversity of the language model.

The contribution of this work is the demonstration that on-
tological relations can reliably be used for smoothing existing n-
gram counts as well as producing novel n-gram contexts to enrich
the language model and increase its performance both in terms of
perplexity and in an automatic speech recognition task.

The outline of this paper is as follows. Section 2 introduces
ontologies and the WordNet ontology used in this work. Section
3 describes our proposed ontological n-gram count smoothing al-
gorithm. Section 4 proceeds with the description of the experi-
ment set-up and the evaluation of our algorithm. Finally, in sec-
tion 5, we conclude and discuss our results.

2. ONTOLOGIES

Ontologies are used to relate concepts in a hierarchical and rela-
tional fashion that ultimately describe the meaning of terms. Log-
ical and philosophical entities can be grouped contextually with
the use of named relations. Figure 1 shows a portion of the en-
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try for the ontology of a cat as it relates to rodents and birds. In
this example, solid lines represent inheritance, dashed lines such
as the ones connecting cat with bird and rodents represent func-
tional relationships and the dotted lines between vertebrate and
spine represent inherited properties.

2.1. The WordNet ontology

We used the popular WordNet [10] as our base ontology from
Princeton University. It is essentially a large lexical database of
English. The main relation between defined words is synonymy,
the state of being a synonym [10]. WordNet lemmas are classi-
fied by part of speech: adjectives (21,479), adverbs (4,481), nouns
(117,798) and verbs (11,529) for a total of 155,287 senses; however
since many words are found in multiple parts-of-speech, a total of
147,278 unique indexed words are found in the ontology.

3. ONTOLOGY-BASED N-GRAM SMOOTHING

In this section we introduce our novel technique to improve the
performance of n-gram smoothing. One of the problems with
current language modeling techniques, as previously stated, is
that they do not necessarily generalize themselves to words of the
same semantic class/sub-class. Counts for words such as cat, dog,
mouse, etc., all being animals, could be proportionally smoothed
by the n-gram entry for lamb from the example of section 2.2.
The same could be said about relational markers between objects
where similar relations could be smoothed with the help of well
established ones. As such, we propose a method of smoothing the
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Fig. 1. Sample of the full ontology as related to a cat. The size of
the nodes represent their degree of connectedness and their color
their part of speech class: adjectives (black), adverbs (not shown,
white), nouns (light gray) and verbs (gray). The colors of the edges
represent the type of relation between nodes. Note that the length
of the lines have no meaning other than to improve the clarity of
the illustration.

n-gram counts by leveraging the latent information stored in on-
tologies. Ontologies are used to relate concepts in a hierarchical
and relational fashion. As was stated in section 2, entities can be
grouped logically and/or philosophically in a contextual fashion
through the use of named and weighted relations. Figure 1 shows
a portion of the WordNet ontology where the ontological distance
from cat = 1.

Therefore, by studying the information contained within, we
are able to smooth our n-gram language model by smoothing

its probabilities with those of weighted n-grams of related terms,
i.e., use the counts of related n-grams C (wr |h) for each word
wr ∈ WR related to wn and its context h to smooth the counts
C (wn |h), where WR is a vector of R words related to wn . In-
versely, to smooth out zero counts, we can use the information
from known C (wn |h) counts to generate semantically probable
unseen C (wr |h) smoothed counts.

We believe that this is a reasonable assumption, especially for
spoken dialogue where speakers can interchange words for related
terms that come to mind more quickly. Furthermore, since this
work seeks to help reduce the data sparseness of counts that are
used for smoothing we propose the following technique based on
interpolation to smooth low-resource language models by intelli-
gently adding information not seen before.

3.1. Bin-based Ontological Smoothing

The bin-based ontological smoothing language model (BBOSLM)
smoothing technique consists of creating bins Bd of smoothed
counts taking into account all words found at a distance d , the
shortest path (number of edges) in the ontology from words wn
and wr , from the original n-gram counts and where d ≤ 1 ≤
dmax and dmax is the maximal distance from wn that is con-
sidered in the ontology. For example, in figure 1, the distance
d(cat,tiger) = 1, d(feline,cattish) = 2, etc. More for-
mally, for each C (wn |wn−1

n−N+1) ∈ Bd :

C (wn |wn−1
n−N+1) = 1

R

Rd∑
r=1

C (wr |wn−1
n−N+1)

d
(2)

where R is the total number of words related to wn up to dmax .
In practice, a vector of related words is pre-computed at the start
of the program using a modified form of depth-limited iterative
deepening depth-first search. As such, R is the number of linked
terms for each word and Rd ≤ R is the number of related terms at
distance d . The premise behind the use of the shortest path as a
measure of conceptual or semantic distance is illustrated in [11],
namely that "...when is-a hierarchies are defined ... shortest path
length can be used to measure conceptual distance between con-
cepts." The ontologically generated counts are then used to gen-
erate language models for each bin LMBd

. Finally, these language
models are interpolated into the final smoothed BBOSLM:

P ′(wn |wn−1
n−N+1) = λ1P (wn |wn−1

n−N+1)

+
D∑

d=1
λd+1PBd

(wn |wn−1
n−N+1) (3)

where D = dmax is the maximum edge distance from the original
in the ontology, PBd

(wn |wn−1
n−N+1) are the probabilities obtained

from the smoothed counts in each bin and whereλ are the mixture
weights and

D+1∑
i=1

λi = 1

are obtained with the help of Powell optimization.

3.2. Ontological smoothing algorithm

The first step in the ontological smoothing process is to convert
the ontology to an efficient graph format for processing. Given an
ontology O (WordNet in this case) and part of speech classes POS,
we convert the ontology to a directed graph G where each node
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N is a lexeme (lemma + forms). Each node can be from multiple
classes, e.g. cat is both a noun and a verb and each edge E repre-
sents a relation between two nodes.

The second step is to tag our corpus’s terms by their part-of-
speech. For this task, we used the Penn-State TreeTagger [12]. This
is to preserve the meaning of the n-gram counts. For example, we
potentially wouldn’t want to smooth the n-gram entry of a verb
with that of a noun. As per [11] we restrict the search space to
synonymous terms for this work. Once the corpus is tagged, we
proceed with the counting task using the SRILM toolkit [13].

Our algorithm operates in D passes: each pass creates a bin
containing the smoothed counts for distance d using (2). Each
pass also adds unseen wr |h events in order to reduce the effects of
limited corpus. Since the number of new counts generated can be
particularly high given a large distance metric, we parallelized our
algorithm. This gives us a speed-up of up to 52% on four threads
with dmax = 5 for the whole smoothing process.

3.3. Ontology search algorithm for R related terms

Since the search space of the ontology is considerable we needed
an efficient algorithm to look for the related terms of each n-
gram entry. The fact that we use an unweighted graph enabled
us to avoid the inherent challenges of searching weighted directed
graphs. The algorithm is a depth-limited form of unweighted it-
erative deepening depth-first search. Basically, as we progress
through the graph each relation is marked gray; we then recur-
sively explore each unmarked child node (we do not return to it
since it has already been seen at a lower level), and thus the "short-
est" path to it is already known. This greatly reduces the cost of ex-
ploring the ontology all the while guaranteeing optimal paths for
each relation.

4. EXPERIMENTS AND RESULTS

4.1. Limited Resources Experimental Setup

The experiments reported in this paper were performed using the
Wall Street Journal-based Continuous Speech Recognition Phase
II corpus (WSJ1). We train our language models on the 76,136 sen-
tences provided by the standard WSJ1 training sets for a total of
1,243,340 words. For the evaluation we restricted ourselves to the
Hub 1 and Spoke 1 tests (10,347 words in 582 sentences) without
filtering out sentences with out-of-vocabulary words (OOV rate of
5.41%).

The SRILM toolkit and HTK toolkit [14] were used for our ex-
periments for language modeling and automatic speech recogni-
tion respectively. We obtain raw training counts using the SRILM
toolkit. These raw counts are then used to generate ontologically
smoothed count bins for each distance group, note that, as per eq.
2, the majority of the counts are fractional counts. Then, Witten-
Bell LMs were created for each bins. Finally, a mixture-based lan-
guage model is created by mixing up each bin-based LM with the
original Witten-Bell LM. Optimal mixup weights were obtained
through the use of Powell’s optimization algorithm [15] using the
SciPy library [16] with the objective function defined as the word
error rate of the held-out development set consisting of 4,340 sen-
tences for a total of 71,759 words. Unfortunately, the SRILM toolkit
does not support fractional counts for Kneser-Ney smoothing and
as such, we cannot properly interpolate the baseline KN model
with our bins.
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Fig. 2. Perplexity evolution during the Powell WER optimization
process to determine the best BBOSLM bin mixup weights for 20K
word trigram LMs trained on the WSJ1 training corpus and con-
ditioned the WSJ1 development corpus. The spikes are due to the
algorithm trying to see if it is in a local optimum.

Perplexity and word error rate (WER) are used to measure the
performance of our language modeling technique. For the acous-
tic models, we use the well-known recipe from Vertanen [17]. Our
model is trained by using all of the WSJ1 training data using the
40 phones set of the CMU dictionary. Cross-word tied-state tri-
phones with 32 Gaussian mixtures per state and 64 Gaussian mix-
tures per silence state are eventually generated. The acoustic
models are represented by Mel Frequency Cepstral Coefficients
with energy, delta and acceleration (MFCC _E_D_A) for a total of
a 39-dimensional feature vector. The HDecode tool with parame-
ters for the pruning beam width, word insertion penalty, and the
language model scale factor of 220.0, -4.0, and 15.0 respectively
were used for the automatic speech recognition test.

4.2. Perplexity evaluation

Perplexity evaluation was performed on the Hub 1 (read WSJ base-
line) and Spoke 1 (language model adaptation) portion of the
WSJ1 corpus which consist of 582 sentences and 10,347 words.
The standard 20,000-word WSJ closed-vocabulary was used for the
evaluation and backed-off trigram language models were gener-
ated using SRILM with the -float-counts option enabled.

The average path length of the ontology is 59.24 with a net-
work diameter of 15 measured using the Gephi toolkit [18]. The
network diameter is a measure of the maximum distance between
any two pairs in the graph. Since it would be too computation-
ally intensive to fully explore each node, we chose to study the ef-
fects of dmax from 1 to 5. From the ∼ 346,000 original raw counts
we end up with ∼ 15,284,000 smoothed counts for B5. Figure 2
shows the evolution of the language model perplexity throughout
the Powell optimization algorithm for the Bin-based ontological
smoothing against the baseline models trained using Witten-Bell
(WB) smoothing and the original Kneser-Ney (UKN) smoothing.
Note that we were not able to include results for Modified Kneser-
Ney (MKN) smoothing as the SRILM toolkit kept computing neg-
ative discount parameters for the trigrams. Results for both single
and multiple bins mixup are provided. Table 1 shows a summary
of the best results obtained. As was expected, our technique is
able to significantly reduce the perplexity of the baseline language
models with the best model showing maximal perplexity reduc-
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Table 1. Comparison of perplexity on WSJ1 Hub 1 and Spoke 1
evaluation corpus using 20K word trigrams using best WER per-
forming single and multiple bins mix-up.

Language Model Perplexity

Witten-Bell 142.61
Kneser-Ney 117.15
BBOSLM -
d = 1 137.46
d = 2 137.5
d = 3 137.92
d = 4 137.54
d = 5 137.53
1 ≤ d ≤ 2 137.14
1 ≤ d ≤ 3 128.55
1 ≤ d ≤ 4 129.45
1 ≤ d ≤ 5 122.49

tion of 9.85% for the WB LM. We were able to get very close to the
perplexity of Kneser-Ney discounting for Bins 1 ≤ d ≤ 5. However
this is to be expected as the training process did not explicitly look
at minimizing perplexity but rather minimizing Word Error Rates.
This is consistent with the literature as it is well known that a re-
duction in perplexity will not always translate in improvements in
automatic speech recognition tasks. The spikes in perplexity are
due to the Powell algorithm exploring the bounded space to see if
it is not currently in a local optimum. This is encouraging since it
demonstrates that our technique can compete with state-of-the-
art language modeling techniques.

4.3. Automatic speech recognition experiments

This experiment investigates the performance of the BBOSLM on
word error rate in an automatic speech recognition task. Much
like the perplexity evaluation, we provide the WER results for sin-
gle bin mixup and multiple bins mixup in relation to the LM
perplexity optimization process. The optimization process was
run three times with evenly distributed starting λ values, figure
3 shows the optimization process for the best performing final
models and starting with λ0 = 0.9. Final λ1 from eq. 3 values
for the two best performing LMs, BBOSLMd3 for single bin mix-
up and BBOSLMd1−d5 for multiple bin mix-up, are 0.9962 and
0.8913 respectively. Globally, results show that the best per-
forming LM are the ones mixing-up multiple smoothed counts
bins. These results are confirmed by every statistical significance
test available in the NIST Scoring Toolkit: a statistically signifi-
cant reduction (mean p = 0.001) in word error rate of 6.8% relative
for BBOSLMd1−d5 and statistically significant reduction (mean
p = 0.01) for BBOSLMd4 with a considerable reduction in inser-
tion and substitution rates compared to the baseline Witten-Bell
discounted LM.

5. CONCLUSION AND DISCUSSION

In this paper, we introduced an original method of preprocess-
ing and smoothing n-gram counts based on the semantic infor-
mation found in ontologies for use in limited resources automatic
speech recognition. It exploits the relations found in ontologies
to create bins of new n-gram events related to existing n-gram
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Table 2. ASR performance comparison on WSJ1 Hub 1 and Spoke
1 evaluation corpus using 20K word trigrams using single and mul-
tiple bins mix-up.

LMS PPL SUB DEL INS WER

WBLM 142.61 22.43 5.89 2.64 30.96
KNLM 117.15 21.87 7.71 1.41 30.98
BBOSLM - - - - -
d = 1 137.46 21.20 6.65 1.72 29.56
d = 2 137.5 21.13 6.67 1.77 29.57
d = 3 137.92 20.99 6.67 1.78 29.44
d = 4 137.54 21.08 6.73 1.74 29.55
d = 5 137.53 21.05 6.79 1.73 29.57
1 ≤ d ≤ 2 137.14 21.18 6.65 1.73 29.56
1 ≤ d ≤ 3 128.55 20.69 6.76 1.58 29.03
1 ≤ d ≤ 4 129.44 20.72 6.74 1.6 29.06
1 ≤ d ≤ 5 122.49 20.23 7.03 1.59 28.85

events. These bins are transformed into language models (LM)
and then mixed-up with the original LM. Experiments demon-
strate that our smoothing technique reduced the perplexity of a
given language model by up to 9.85% when considering bins of
related words with a maximal ontological distance of up to 5. In
addition, we evaluated our language models on the Hub 1 and
Spoke 1 tasks of the Wall Street Journal-based Continuous Speech
Recognition Phase II corpus. We showed that it reduced word er-
ror rate (WER) in a statistically significant manner compared to
Kneser-Ney discounting (p = 0.001). The fact that we were able to
obtain statistically significant performance increase indicate that
it shows promise as a tool for language model smoothing, espe-
cially when textual resources are sparse. Future work will look to
incorporate different ontological distance metrics such as those
proposed by Jing et al.[19] as well as exploring information theory-
based schemes to weight the different relations between words de-
scribed by the ontology.
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