
CODE SWITCH LANGUAGE MODELING WITH FUNCTIONAL HEAD CONSTRAINT

Ying Li, Pascale Fung

Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

eewing@ee.ust.hk, pascale@ece.ust.hk

ABSTRACT

In this paper, we propose for the first time to incorporate the
linguistically well-known Functional Head Constraint into
a code switch language model for speech recognition. Un-
der this constraint, code switch cannot occur between the
functional head and its complements. The constrained code
switching language model is obtained by first expanding the
search network with a translation model; and then using
lattice-based parsing to restrict paths to those permissible
under the Functional Head Constraint. We tested our system
on two tasks of code switch speech recognition, namely lec-
ture speech recognition and lunch conversation recognition.
Our system reduces word error rates (WER) from a baseline
mixed language model by 3.72% relative in the first task;
and by 5.85% in the second task. It reduces WER from an
interpolated language model by 2.51% in the first task; and
by 4.57% in the second task. All results are statistically sig-
nificant. In addition, our method reduces WER for both the
matrix language and the embedded language.

Index Terms— Mixed language speech recognition, code
switch language modeling

1. INTRODUCTION

Code switching is a common linguistic phenomenon among
multilingual speakers. It is particularly prevalent among the
large population of speakers of Spanish/English, Hindi/English,
Chinese/English, Arabic/French, etc. Multilingual people of-
ten mix words or phrases in the principal language and code
switch to the other language when they speak. The principal
language of the speech is called the matrix language (ML),
and the foreign language is the embedded language (EL) [1].

Lack of transcribed code switch training data is a major
obstacle faced by speech recognition systems. Consequently,
language modeling of code switch speech has been a major
bottle neck to system development.

A baseline approach to code switch language modeling is
to use an interpolated model between the monolingual lan-
guage models of the matrix and embedded languages. This
approach poses very little constraint on where languages can

be switched between each other. Another approach is to de-
tect the code switch boundaries of the mixed language speech
by means of phonetic or acoustic modeling, then recognize
the speech segment by using the corresponding monolingual
language model [2, 3, 4, 5]. The major and often fatal weak-
ness of this approach is that language identification at the
switch points is often erroneous and leads to irrecoverable
recognition errors down the pipeline.

To provide more generality, linguists have long dis-
covered and debated various constraints on code switch-
ing speech. Among them, the Functional Head Constraint
[6, 7, 8], along with the Equivalence Constraint [12], are the
best-known grammatical constraints. For code switching,
they both provide grammatical rules that constrain where in
a sentence code switch cannot happen (instead of postulating
where and why code switch can happen). Functional Head
Constraint is known to be more restrictive than the Equiva-
lence Constraint. Under this constraint, code switch cannot
occur between a functional head and its complements. In
this paper, we propose to incorporate the Functional Head
Constraint to a code switch language model for speech recog-
nition.

Based on this, we use a two-pass decoding procedure to
recognize the code switch speech. In the first pass, the code
switch speech is decoded using the composition of the acous-
tic model, language model in the matrix language and a code
switch language model. The code switching language model
is trained using parallel text in the matrix and embedded lan-
guages. In the second pass, a lattice-based parser is used
to obtain the syntactic structure to subject to the Functional
Head Constraint. The code switch language model is then
combined with a monolingual language model in the matrix
language for final recognition.

2. RELATION TO PRIOR WORK

A common approach of code switch language model is to
interpolate between the matrix and embedded languages,
trained separately from monolingual texts [9, 10, 11]. How-
ever, this approach does not assume any syntactic constraint
that has been found in the code switching speech.
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Fig. 1. A Functional Head Constraint example.

We previously implemented an approximation of the
Equivalence Constraint [12, 13, 14] in a code switch lan-
guage model by using word order inversion constraint from
machine translation [15, 16, 17].

The work presented here focuses on implementing the full
Functional Head Constraint, which is found to be more re-
strictive than the Equivalence Constraint, by using a lattice
parser with a weighted finite state transducer. The lattice-
based parsing approach presented in the prior works [18] is
used to parse the word lattice generated from the first decod-
ing step.

3. FUNCTIONAL HEAD CONSTRAINT

Functional Head Constraint is a well-known observation
made by linguists [6, 7, 8] regarding code switch. The Func-
tional Head Constraint stipulates that “the language feature
of the complement f-selected by a functional head, like all
other relevant features, must match the corresponding feature
of that functional head” [8]. This means that “code-switching
cannot occur between a functional head (a complementizer, a
determiner, an inflection, etc.) and its complement (sentence,
noun-phrase, verb-phrase)” 1.

Our work for the first time propose a method to incorpo-
rate this linguistically well-know constraint into code switch
language modeling.

We illustrate the Functional Head Constraint in Figure 1.
Functional heads are the roots of the subtrees: complements
are the subtrees. actual words are at the leave nodes. Ac-
cording to the Functional Head Constraint, all the leaves of
a given subtree must be in either the matrix language or the
embedded language.

1http://en.wikipedia.org/wiki/Code-switching

For instance, the third word “東西/something” is the
head of the constituent “非常/very 重要的/important 東
西/something”. According to the Functional Head Con-
straint, it is not permissible to code switch between the three
constituent words. More precisely, the language of the con-
stituent is constrained to be the same as the language of the
headword.

4. CODE SWITCH LANGUAGE MODELING WITH
FUNCTIONAL HEAD CONSTRAINT

Each input speech is decoded to generate a word lattice using
the acoustic and language models. A tree structure is obtained
by parsing the word lattice using the lattice-based syntactic
parser. The lattice is expanded by allowing the subtree of
the parse tree to be code-switched to the embedded language
according to the Functional Head Constraint.

4.1. Code Switch Language Modeling in a WFST Frame-
work

We propose to integrate a code switch acoustic model and the
code switch language model with Functional Head Constraint
in a WFST framework.

Suppose X denotes the observed code switch speech vec-
tor, a hypothesis transcript is as follows:

v̂I1 = argmax
vI
1

P (vJ1 |X)

= argmax
vI
1

P (X|vI1)P (vI1)

= argmax
vI
1

P (X|vI1)
∑
wJ

1

P (vI1 |wJ
1 )P (W

J
1 )

∼= argmax
vI
1

P (X|vI1)P (vI1 |wJ
1 )P (w

J
1 ) (1)

where P (X|vI1) is the acoustic model and P (vI1) is the lan-
guage model in the mixed language.

As code switch text data is scarce, our code switch lan-
guage model is obtained from a translation model P (vI1 |wJ

1 )
from the matrix language to the mixed language, and the lan-
guage model in the matrix language P (wJ

1 ).

Instead of word-to-word translation independently, the
transduction of the context dependent lexicon transfer is con-
strained by previous words:
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(2)

We propose to use a weighted finite state transducer
framework incorporating the bilingual acoustic model P , the
context model C, the lexicon L, and the grammar G into a
C-level search network

N = P ◦ C ◦ L ◦G (3)

The H-level search network is composed of the state model
H the universal phoneme model P , the context model C, the
lexicon L, and the grammar G

N = H ◦ P ◦ C ◦ L ◦G (4)

The C-level requires less memory then the H-level search net-
work. For mixed language speech recognition, the grammar
is code switching language model GCS . The output of the
recognition result is in the mixed language after projection
π(GCS):

N = P ◦ C ◦ L ◦ π(GCS) (5)

In our previous system, the code switching language
model with inversion constraint was modeled as

P (vI1 |wJ
1 ) =

∑
ṽL
1 ,cL1 ,rK1 ,w̃K

1

P (w̃K
1 |wJ

1 ) · P (rK1 |w̃K
1 , w

J
1 )

·P (cL1 , rK1 , w̃K
1 , w

J
1 )

·P (ṽK1 |cL1 , rK1 , w̃K
1 , w

J
1 )

·P (vI1 |ṽK1 , rK1 , w̃K
1 , w

J
1 ) (6)

where P (w̃K
1 |wJ

1 ) segments the words into phrases,
P (rK1 |w̃K

1 , w
J
1 ) estimates the probabilities of phrase permu-

tations, P (ṽK1 |cL1 , rK1 , w̃K
1 , w

J
1 ) translates a chunk of words

into the embedded language and P (ṽK1 |cL1 , rK1 , w̃K
1 , w

J
1 ) is

reconstruct the chunks to words. A word sequence in the ma-
trix language wJ

1 is segmented into phrases, w̃K
1 ; and ṽK1 is a

chunk sequence in mixed language.
In this paper, the WFST implementation to obtain the

code switch language model GCS is proposed as follows:

Gcs = T ◦G
(7)

where T is the translation model

P (ṽL1 |wJ
1 ) =

L∏
l=1

Pl(ṽl|wl) (8)

Pl(ṽl|wl) is the probability ofwl translated into ṽl. The words
are translated under the Functional Head Constraint.

4.2. Functional Head Constraint by Lattice-based Pars-
ing

Lattice-based parsing is used to expand the word lattice ac-
cording to the Functional Head Constraint. A Probabilis-
tic Context-Free Grammar (PCFG) parser is trained on Penn
Treebank data. The PCFG parser is generalized to take the
lattice generated by the recognizer as the input. All the nodes
of the word-lattice are ordered by increasing depth. The CYK
table is obtained by associating the arcs with their start and
end states in the lattice instead of their sentence position and
initialized all the cells in the table corresponding to the arcs.
The remaining procedure of CYK is unchanged.

After the parse tree is obtained, we recursively enumer-
ate all its subtree. Each subtree is able to code-switch to the
embedded language with a translation probability Pl(ṽl|wl).

4.3. Decoding by Translation

In our work, a two-pass decoding is proposed to recog-
nize code switch speech. The first decoding pass composes
of the transducer of the universal phoneme model P , the
transducer C from context-dependent phones to context-
independent phones, the lexicon transducer L which maps
context-independent phone sequences to word strings and the
transducer of the language model G.

ASR1 = P ◦ C ◦ L ◦G (9)

The language modelGCS of the transducer in the second pass
is improved from G by composing with the translation model
Pl(ṽl|wl). Finally, the recognition transducer is optimized by
determination and minimization operations.

ASR2 = P ◦C ◦min(det(L ◦min(det(π(GCS))))) (10)

5. EXPERIMENTS

5.1. Experimental Setup

The bilingual acoustic model is trained from 160 hours of
GALE Phase 1 Chinese broadcast conversation, 40 hours of
GALE Phase 1 English broadcast conversation, and 3 hours
of nonnative English data recorded in house. 39-dimensional
MFCC features analyzed at a 10msec frame rate with a
25msec window size are used. The pronunciation dictionary
is obtained by modifying Mandarin and English dictionar-
ies using the phone set consisting of 21 Mandarin standard
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initials, 37 Mandarin finals, 6 zero initials and 6 extended
English phones. The acoustic models are state-clustered
crossword tri-phone Hidden Markov Models with 16 Gaus-
sian mixture and reconstructed by decision tree tying [10].

We also use two Chinese-English code switching speech
databases - namely, 20 hours of lecture speech corpus (Data
1) and 3 hours of lunch conversation corpus (Data 2). 1037
utterances of Data 1 are used as the test set (Test 1). 280
utterances of Data 2 are used as the test set (Test 2).

Transcriptions of 18 hours of Data 1 are trained as a base-
line mixed language model for Test 1. Chinese speech confer-
ence papers, power point slides and web data are used to train
a baseline Chinese language model for the lecture speech do-
main (LM 1). Transcriptions of 2 hours of Data 2 are used
as the baseline mixed language model in Test 2. The GALE
Phase 1 Chinese conversational speech transcriptions are used
to train a Chinese language model (LM 2). GALE Phase 1
English conversational speech transcriptions are used to train
the English language model (LM 3).

To train the bilingual translation model, the Chinese Gale
Phrase 1 conversational speech transcriptions are used to gen-
erate a bilingual corpus using machine translation.

An interpolated language model for the lecture speech and
lunch conversation domain is trained from interpolating LM
1 with LM 3 and LM 2 with LM 3 respectively.

Adapted language models are trained by adapting the in-
terpolated models with code switch data under the maximum
likelihood criterion using the EM algorithm [19].

5.2. Experimental Results

Table 1 and 2 shows the word error rates (WERs) of exper-
iments on the code switching lecture speech and lunch con-
versation test sets. Our proposed code switching language
model with Functional Head Constraints reduces the WERs
in the baseline mixed language model by 3.72% relative on
Test 1; and 5.85% on Test 2. Our method also reduces WER
by 2.51% relative compared to the adapted language model
on Test 1; and by 4.57% on Test 2. Moreover, our proposed
method also reduces WER by 5.47% compared to the inter-
polated model on Test 2. All the WER reductions are sta-
tistically significant at 99%. 35 out of 2080 and 12 out of
570 code switching instances are corrected by the proposed
method over Test 1 and Test 2.

For our reference, we also compare the performance of
using Functional Head Constraint to that of using inversion
constraint in our previous work and found that the present
model reduces WER by 0.85% on Test 2 but gives no im-
provement on Test 1. We hypothesize that since Test 1 has
mostly Chinese words, the proposed method is not as advan-
tageous compared to our previous work. Another future di-
rection is for us to improve the lattice parser as we believe
it will lead to further improvement on the final result of our
proposed method.

Table 1. Our proposed system outperforms the baselines in
terms of WER on the lecture speech

MandarinEnglish Mixed
MixedLM 34.41% 39.16% 35.17%(-3.72%)
InterpolatedLM 34.11% 40.28% 35.10%(-3.73%)
AdaptedLM 35.11% 38.41% 34.73%(-2.51%)
CodeSwitchingLM
+Inversion 32.76% 37.00% 33.44%(+1.26%)
CodeSwitchingLM
+FunctionalHead 33.27% 36.94%33.86%

Table 2. Our proposed system outperforms the baselines in
terms of WER on the lunch conversation

MandarinEnglish Mixed
MixedLM 46.4% 48.55% 46.83%(-5.85%)
InterpolatedLM 46.04% 49.04% 46.64%(-5.46%)
AdaptedLM 46.64% 48.39% 46.20%(-4.57%)
CodeSwitchingLM
+Inversion 43.85% 46.97% 44.47%(-0.85%)
CodeSwitchingLM
+FunctionalHead 43.24% 46.27%43.89%

6. CONCLUSION

In this paper we describe a first ever method of incorporating
the linguistically well-known Functional Head Constraint in
code switch speech into a code switch language model. Func-
tional Head Constraint means that the complements of a sub-
tree must switch language with its head word. We propose a
weighted finite state transduction based framework to incor-
porate the acoustic model, the matrix language model, and the
translation model for final decoding.

The translation model expands the matrix language model
into a bilingual language model. Lattice-based parsing is used
to provide the syntactic structure of the matrix language. Ma-
trix words at the leave nodes of the syntax tree are permitted
to switch to the embedded language if the switch does not
violate the Functional Head Constraint. This reduces the per-
missible search paths from those expanded by the bilingual
language model.

We tested our system on two tasks of code switched
speech recognition, namely on lecture speech recognition
and on lunch conversation recognition. Our system reduces
WERs from a baseline mixed language model by 3.72% rel-
ative in the first task; and by 5.85% in the second task: it
reduces WERs from an adapted language model by 2.51% in
the first task; and by 4.57% in the second task. All results are
statistically significant. In addition, our method reduces word
error rates for both the matrix language and the embedded
language.
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