2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

VARIANCE REGULARIZATION OF RNNLM FOR SPEECH RECOGNITION

Yongzhe Shi, Wei-Qiang Zhang, Meng Cai and Jia Liu

Tsinghua National Laboratory for Information Science and Technology,
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
{shiyz09, caimeng06 } @ gmail.com, {wqzhang, liuj} @tsinghua.edu.cn

ABSTRACT

Recurrent neural network language models (RNNLMs) have
been proved superior to many other competitive language
modeling techniques in terms of perplexity and word error
rate. The remaining problem is the great computational com-
plexity of RNNLMs in the output layer, resulting in long time
for evaluation. Typically, a class-based RNNLM with the out-
put layer factorized was proposed for speedup, which was still
not fast enough for real-time systems. In this paper, a novel
variance regularization algorithm is proposed for RNNLMs
to address this problem. All the softmax-normalizing factors
in the output layers are penalized to make them converge
to one during the training phase, so that the output prob-
ability can be estimated efficiently via one dot-product of
vectors in the output layer. The computational complexity
of the output layer is reduced significantly from O(|V|H) to
O(H).We further use this model for rescoring in an advanced
CD-HMM-DNN system. Experimental results show that our
proposed variance regularization algorithm works quite well,
and the word prediction of the model is about 300 times faster
than that of RNNLM without any obvious deteriorations in
word error rate.

Index Terms— Variance regularization, recurrent neural
network language model, speech recognition

1. INTRODUCTION

Recurrent neural network language models (RNNLMs) have
been proved to outperform many competitive language mod-
eling techniques in terms of perplexity and word error rate on
speech-to-text tasks [1, 2]. Like other neural network lan-
guage models (NNLMs), the main drawback of RNNLMs
is the long training and testing time. The heavy computa-
tional burden comes from the output layer that contains tens
of thousands of units corresponding to the words in the vo-
cabulary. The output needs to be normalized as probability in
the output layer. Many speeding techniques are explored for
NNLMs, including GPU-based parallelization, shortlist [3],
structured output layer [4, 5, 6, 7], pre-computing [8] and
other methods[9, 10]. Generally, most of these techniques
can be easily extended to RNNLMSs. Typically, a class-based

978-1-4799-2893-4/14/$31.00 ©2014 |[EEE

4931

output layer based on word clustering [11, 7] was proposed
for speedup. Most of these techniques focus on speeding up
the training phase, even though the testing phase is speeded
up at the same time. Little attention is focused on the testing
phase, while fast evaluation is more critical for recognition.
In this work, speeding up the word prediction at the testing
phase is investigated for RNNLMs.

This paper introduces a novel variance regularization
algorithm for RNNLMs to address this problem. All the
softmax-normalizing factors in the output sub-layers are pe-
nalized to make them converge to one during the training
phase, so that the output probability can be estimated effi-
ciently via one dot-product of vectors in the output layer. The
computational complexity for evaluation is reduced signif-
icantly, without explicit softmax normalization. There are
a large number of local minima in the parameter space of
the RNNLM, the variance regularization in this paper means
to make the RNNLM converge to a specific local minimum
during the training phase.

The remainder of this paper is organized as follows: The
class-based RNNLM is firstly reviewed in Section II. Section
III presents our proposed variance regularization algorithm
for RNNLMs. Experimental evaluation is given in Section
IV and V. Section VI concludes this paper and gives our main
findings.

2. REVIEW OF CLASS-BASED RNNLM

To speed up the training of the RNNLM, a class-based
RNNLM via frequency factorization was proposed in 2011
[11], shown in Fig. 1. In this section, the class-based RNNLM
via frequency factorization is firstly reviewed, and then the
computational complexity is analyzed. Given a word se-
quence 3, let the word corresponding to step ¢ be denoted as
wy. The identity of w; can be denoted as y; € V , where the
subscript % of y; is the word index in the vocabulary. The word
wy can be represented by 1-of-V coding vector vy, where all
the elements are null except the i-th.

The states of hidden nodes compactly cluster the history
and the current input.

h; = sigmoid(Whphi—1 + Wy vy), (1)

h

= Pe(we| hie, ¢)

Wit

2 Pl h)

Fig. 1. Class-based RNNLM via frequency-based factoriza-
tion

where W;;, maps each word to its real-valued representation,
and W, denotes the dynamics of sequence in time.

To reduce the complexity, the output layer is divided
into a class layer and many sub-layers as the output. Many
methods can be used to construct these output layers, includ-
ing frequency-binning factorization [11], Brown clustering
[12], etc. Perhaps, the simplest method is the frequency-
binning factorization technique, where words are assigned to
classes proportionally. This method divides the cumulative
probability of words in a corpus into K partitions to form
K frequency-binnings which corresponds to K clusters. It
means that there are K + 1 sub-layers as the output, including
the class layer.

Two transformation matrices Wy, € R¢*H and W, €
RIVIXH are defined as Wi, = [91,02, ..., 9¢]T and Wy, =
[01,02,....0]7 in the output layer, respectively, where
9; € RHX1 or 0; € RT*! corresponds to each output node.
The class probability is computed as

exp(s
P(Ct = k|ht) = y,
~st (2)
with s = 19fht and zg = Zexp(ﬁiTht),

Vi

where exp(s;) and z,; correspond to the unnormalized prob-
ability and the softmax-normalizing factor in the class layer,
respectively. The word probability given the class is estimated
similarly as

exp(o
Pc(wt = yj|ht70t) = p(t)a
ot 3)
with o = OJTht and z, = Z exp(GZTht), ’
VieC(wy)

where C(+) denotes all the nodes belonging to the same clus-
ter.

The probability of the next word w; is computed as
P (Ct | ht) PC

P(wt|ht_1,wt_1) - (wt|htyct)a (4)

4932

where c¢; denotes the class corresponding to word wy.The
nodes in the same sub-layer, instead of all the nodes in the
output layer, need to be normalized via softmax function.

The class-based RNNLM requires H x H +H x C'+ H x
O; multiplications for evaluation, where H, C and O; denote
the number of nodes in the hidden layer, the class layer and
the ¢-th sub-layer, respectively. Empirically, O; ranges from
1 to thousands, depending on the class that the word belongs
to. The complexity is reduced for training and testing.

3. VARIANCE REGULARIZATION FOR RNNLM

The computational bottleneck comes from the softmax output
layer, even though the output layer is factorized into many
sub-layers. It takes long time to compute zg; and z,; in the
output layer for normalization.

Given the training text T, the normalizing factors, z4; and
Zot, are introduced in the objective function and penalized
during the training phase.

(&)

where O denotes the parameters of the RNNLM, 7 and A are
the penalties of the log-normalizing factors, and J(©) is the
cross-entropy based objective function, presented as

IT|

=~ > Zlog (welhy)). (6)

Our goal is to make the RNNLM converge to a specific lo-
cal minimum in the parameter space, where the normalizing
factors in the sub-layers and the class layer are close to one
as much as possible. The gradient of .J(©) can be efficiently
computed as

aJ aJ Z 0z log(zt)
FE) 0@ |T| Zst
(7
Z Ozt log
ITI
where the partial derivatives of z4; are computed as

0ot _ exp(0Th)hy Vi e 1,0,
00, J
9o (3

s T
8ht = eXp(Oj ht)Oj,

and the partial derivatives of z4; for the other parameters in ©
can be obtained via chain-rule. The partial derivatives of z,;
can be also computed similarly.

probability density distribution of log(zsitzot)

77777‘:0-0
—n=3.0

251 y

probability
&

0.5 al
/ \
o i PR . T i i i
-5 0] 5 10 15 20 25 30 35
log(zst2ot)

Fig. 2. Probability density distribution of log(zs2,¢) on the
test set of the PTB corpus, where n = 0.0 means no variance
regularization.

Based on our proposed variance regularization algorithm,
the log-probability of the next word can be simplified as

log(P(’wt = y]-|ht,1,wt,1)) ~ (ﬁk + gj)Tht,

s.t. log(zstzot) = 0,

€))

where the subscript k of 9 denotes the index of the class that
the word w; belongs to. The log-probability of the next word
can be approximately estimated via one summation and one
dot-product of vectors in the output layer, where the computa-
tional complexity is reduced significantly. Note that the accu-
racy of Eq. (9) depends on how close to one the normalizing
factors are in the statistical sense.

Two open questions are considered for our proposed vari-
ance regularization algorithm. One is how close to zero
log(zstzot) is in the statistical sense, and the other one is
whether the model performance is degraded or not under our
proposed constraint. The both questions will be answered
based on experimental evaluations in the following section.

4. PERPLEXITY EVALUATION

One of the most widely used data sets for evaluating the
performance of statistical language models is the Penn Tree-
bank portion of the Wall Street Journal Corpus, denoted as
PTB corpus. The PTB corpus is preprocessed by lowercasing
words, removing punctuation and replacing numbers with the
“N” symbol. Sections 00-20 are used as training sets (930K
words), sections 21-22 as validation sets (74K words), and
sections 23-24 as test sets (82K words). The vocabulary size
is 10K. In this section, the PTB corpus is used to evaluate our
proposed algorithm.

An RNNLM model with 200 hidden nodes is trained us-
ing rnnlm toolkit [13], where the 100 classes are used for
speedup. Another model with the same setup is also trained
with n = A = 3.0 for variance regularization. If there are

4933

variance of log(zstzot) varies with penalty n

T T T T
4 1421

10°

Var(log(zstzot))

0.129

_ 0.083
107" 0.065

Fig. 3. Variance of log(zs:2¢) varies with penalty 1 on the
test set of the PTB corpus, where n = 0.0 means no variance
regularization.

convergence of rnnlm on validation set
400 T T T T

—»—77:‘0.00
‘\ n=0.25
350 o 722(1)8 :
— % -n=2.0
- -1n1=3.0
_ 300 1
B
=
&
g 250 b
2,
200 1
150 CE e
5 10 15 20 25

Fig. 4. Perplexity convergence of RNNLM on the validation
set, where 17 = 0.00 means no variance regularization.

no specific instructions, 7 is set equally to A for convenience.
The two models are evaluated on the test set of the PTB cor-
pus, where the normalizing factor zs:2,¢ in the logarithmic
domain is computed at each time step. The distribution of
the normalizing factor in the logarithmic domain is shown
in Fig. 2 for comparisons. The normalizing factor of the
RNNLM (n = 0.0) ranges from 5 to 20 in the logarithmic
domain. On the contrary, the normalizing factor of the other
model with 77 = 3.0 shrinks sharply.

Several RNNLM models with different n are also trained
for comparisons. All the models are evaluated on the test set
of the PTB corpus, and the variance of log(zs;2¢) is com-
puted and shown in Fig. 3. It is straightforward to see that the
variance of log(zs;2,¢) decreases with the increase of 1. The
smaller the variance, the more accurate the Eq. (9).

Finally, the perplexities of these models on the validation
set during the training phase are shown in Fig. 4, where the
model with large n requires more epochs to converge com-

pletely. It is clear that our proposed variance regularization
algorithm doesn’t degrade the model performance.

5. SPEECH RECOGNITION EXPERIMENTS

The effectiveness of our proposed variance regularization
algorithm is evaluated on the STT task with the 309-hour
Switchboard-I training set [14]. The data for system devel-
opment is the 1831-segment SWB part of the NIST 2000
Hub5 eval set (Hub5’00-SWB). The FSH half of the 6.3h
Spring 2003 NIST rich transcription set (RT03S-FSH) acts
as the evaluation set. A well-tuned CD-DNN-HMM system
[15, 16] is used in the STT task. The input to the DNN con-
tains 11 (5-1-5) frames of 39-dimensional PLP features, and
the DNN uses the architecture of 429-2048x7-9308. A back-
off trigram (KN3) was trained via Kneser-Ney smoothing on
the 2000h Fisher transcripts, containing 23 million tokens,
for decoding, where the vocabulary is limited to 53K words
and unknown words are mapped into a special token <unk>.
A back-off 5-gram (KNS5) was also trained similarly as KN3
for rescoring. Note that no other unknown text is used to train
LMs for interpolations, so that the following experimental
results are easily repeatable. The pronouncing dictionary
comes from CMU [17].

An RNNLM with 300 hidden nodes and 400 classes
is trained on the transcripts. The truncated backpropaga-
tion through time algorithm (BPTT) is used for training the
RNNLM with 10 time steps. The learning rate is initially set
to 0.1 and halved when the perplexity decreases very slowly
or increases. Another RNNLM with variance regularization
n=A=2.0 is also trained in the same setup for comparisons.
For convenience, 100-best hypotheses are generated from the
well-tuned STT system and rescored by KNS5 and RNNLMs.
The weight for interpolation, scale of LM scores, and word
penalty are all tuned on the Hub5’00-SWB set and the perfor-
mance of each LM is evaluated on RT03S-FSH set.

These hypotheses are first rescored with exact probability
of RNNLM as our baseline, shown in Table 1, where the ab-
solute reduction in WER is also shown for comparisons. The
RNNLM reduces the WER by 1.8% and 1.7% on Hub5’00-
SWB and RTO03S-FSH sets, respectively. Larger WER re-
ductions are obtained through the interpolation with KNS5.
Then, the same rescoring experiment is performed with UP-
RNNLM-VR for comparisons, where UP-RNNLM-VR de-
notes the unnormalized probability of RNNLM with variance
regularization. The similar WER reductions are obtained for
UP-RNNLM-VR, shown in Table 1. Experimental results
show that our proposed variance regularization doesn’t de-
grade the performance of RNNLM.

The complexity is analyzed and shown in Table 2 for com-
parisons. The testing speed is measured by the number of
words processed per second on a machine with an Intel(R)
Xeon(R) 8-core CPU E5520@2.27GHz and 8G RAM, shown
in Table 2. The word prediction of UP-RNNLM-C400-VR is

4934

Table 1. Word error rates (WERs) of Hub5’00-SWB and
RTO03S-FSH for 100-best rescoring using different RNNLMs
and back-off 5-gram (KNS).

WER % (absolute change)

Model Hub5"00-SWB | RTO3S-FSH
One-best 17.3 20.2
KNS5 17.1 19.5

RNNLM 15.5 (-1.8) 18.5 (-1.7)

+ KNS5 15.3 (-2.0) 18.1 (-2.1)

UP-RNNLM-VR | 155 (-1.8) 18.7 (-1.5)

+ KNS5 15.2 (-2.1) 18.1 (-2.1)

Table 2. Complexity and speed comparisons of RNNLM,
RNNLM-C400 and UP-RNNLM-VR at the recognition stage.

3
Model Complexity (\SKE) iil(i ;(Slf?c)
RNNLM O(H? +|V[H) 0.041
+Class Layer | O(H? + (|[V|/C + C)H) 4.21
UP-RNNLM-VR O(H? + H) 11.95

about three times faster than that of RNNLM-C400 or 300
times as fast as that of RNNLM. The word prediction at the
testing phase is speeded up significantly based on variance
regularization. Experimental results show that our proposed
variance regularization algorithm works quite well for fast
word predictions.

6. CONCLUSION

A novel variance regularization algorithm is proposed for the
class-based RNNLM. The normalizing factors in the sub-
layers and the class layer are constrained to one during the
training, so that the probability of the next word can be effi-
ciently estimated with one summation and one dot-product of
vectors in the output layer for evaluation. The computational
complexity is reduced significantly. Additionally, the work
introduced in this paper is so general-purpose that can be eas-
ily extended to other neural network or multi-task classifiers.
Also, this method can be easily extended into feed-forward
NNLM and a larger speedup factor can be expected since
the h; in hidden layer can efficiently computed via lookup
in table. Finally, our proposed model has the potential to
be incorporated into the first decoding pass of STT system,
which we are currently investigating.

7. ACKNOWLEDGEMENTS

This work was supported by National Natural Science Foun-
dation of China under Grant No. 61370034, No. 61273268
and No. 61005019.

(1]

(2]

(3]

[4]

(5]

(7]

(8]

[9]

[10]

(11]

[12]

8. REFERENCES

Tomas Mikolov, Anoop Deoras, Stefan Kombrink,
Lukas Burget, and Jan Honza Cernocky, “Empirical
evaluation and combination of advanced language mod-
eling techniques,” in Proc. of InterSpeech, 2011.

Tomas Mikolov, Statistical Language Models Based
on Neural Netowrks, Ph.D. thesis, Brno Uni-
versity of Technology (BUT), 2012, [Online]
http://www.fit.vutbr.cz/ imikolov/rnnlm/thesis.pdf.

Holger Schwenk and Jean-Luc Gauvain, “Connection-
ist language modeling for large vocabulary continuous
speech recognition,” in Proc. of ICASSP, 2002, pp. 765—
768.

Frederic Morin and Yoshua Bengio, “Hierarchical prob-
abilistic neural network language model,” in Proc. of
AISTATS, 2005, pp. 246-252.

Andriy Mnih and Geoffrey Hinton, “A scalable hierar-
chical distributed language model,” Advances in Neural
Information Processing Systems, vol. 21, 2008.

Hai Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc
Gauvain, and Francois Yvon, “Structured output layer
neural network language model,” in Proc. of ICASSP,
2011, pp. 5524-5527.

Yongzhe Shi, Wei-Qiang Zhang, Jia Liu, and Michael T.
Johnson, “RNN language model with word clustering
and class-based output layer,” EURASIP Journal on Au-
dio, Speech, and Music Processing, vol. 22, 2013.

F. Zamora-Martinez, M. J. Castro-Bleda, and S. Espana-
Boquera, “Fast evaluation of connectionist language
models,” in Proc. of IWANN ’09, 2009, pp. 33—40.

Andriy Mnih and Yee Whye Teh, “A fast and simple al-
gorithm for training neural probabilistic language mod-
els,” in Proc. of ICML, 2012.

T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy,
and B. Ramabhadran, “Low-rank matrix factorization
for deep neural network training with high-dimensional
output targets,” in Proc. of ICASSP, 2013.

Tomas Mikolov, Stefan Kombrink, Lukas Burget,
Jan Honza Cernocky, and Sanjeev Khudanpur, “Exten-
sions of recurrent neural network language model,” in
Proc. of ICASSP, 2011.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer,
Vincent J. Della Pietra, and Jenifer C. Lai, “Class-
based n-gram models for natural language,” Comput.
Linguist., vol. 18, no. 4, pp. 467-479, 1992.

4935

[13] Tomas Mikolov, Anoop Deoras, Stefan Kombrink,

Lukas Burget, and Jan Honza Cernocky, “RNNLM
- recurrent neural network language modeling
toolkit,” in Proc. of ASRU, 2011, [Available]

http://www.fit.vutbr.cz/ imikolov/rnnlm/.

[14] J. Godfrey and E. Holliman, “Switchboard-1 release 2,”
Linguistic Data Consortium, Philadelphia, 1997.

[15] Meng Cai, Yongzhe Shi, and Jia Liu, “Deep maxout
neural networks for speech recognition,” in Proc. of
ASRU, 2013.

[16] Frank Seide, Gang Li, Xie Chen, and Dong Yu, “Fea-
ture engineering in context-dependent deep neural net-
works for conversational speech transcription,” in Proc.

of ASRU, 2011.

[17] “The CMU Pronouncing Dictionary Release 0.7a,”
2007, [Available] http://www.speech.cs.cmu.edu/cgi-

bin/cmudict.

