2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

STATIC INTERPOLATION OF EXPONENTIAL N-GRAM MODELS USING FEATURES OF
FEATURES

Abhinav Sethy', Stanley Chen', Bhuvana Ramabhadran*
Paul Vozila®

L IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
2 Nuance Communications, Burlington, MA, USA

ABSTRACT

The best language model performance for a task is often
achieved by interpolating language models built separately
on corpora from multiple sources. While common practice is
to use a single set of fixed interpolation weights to combine
models, past work has found that gains can be had by allow-
ing weights to vary by n-gram, when linearly interpolating
word n-gram models. In this work, we investigate whether
similar ideas can be used to improve log-linear interpolation
for Model M, an exponential class-based n-gram model with
state-of-the-art performance. We focus on log-linear interpo-
lation as Model M’s combined via (regular) linear interpola-
tion cannot be statically compiled into a single model, as is
required for many applications due to resource constraints.
We present a general parameter interpolation framework in
which a weight prediction model is used to compute the in-
terpolation weights for each n-gram. The weight prediction
model takes a rich representation of n-gram features as input,
and is trained to optimize the perplexity of a held-out set. In
experiments on Broadcast News, we show that a mixture of
experts weight prediction model yields significant perplex-
ity and word-error rate improvements as compared to static
linear interpolation.

1. INTRODUCTION

Language models are essential for many natural language pro-
cessing applications such as machine translation and speech
recognition. For many tasks, training text is available from a
collection of diverse data sources. While one can simply train
a single model on the pooled data, better performance can
often be achieved by building a separate language model on
each individual corpus and interpolating the component mod-
els. Interpolation techniques can be categorized as static or
dynamic. In dynamic interpolation, each component model
is evaluated and their outputs are combined at run time. In
static interpolation, the component models are combined into
a single model off-line, avoiding the need to store multiple
models and do multiple language model evaluations at run
time. While dynamic interpolation offers increased flexibility

978-1-4799-2893-4/14/$31.00 ©2014 |[EEE

and sometimes improved performance, static interpolation is
preferred for most applications due to the reduced time and
memory requirements.

We focus on static interpolation for Model M, an expo-
nential class-based n-gram model that has achieved superior
performance over many tasks [1]. While the most common in-
terpolation method is linear interpolation, it is unknown how
to express the linear interpolation of a set of Model M’s as a
single Model M, in constrast to word n-gram language mod-
els [2]. Instead, we examine log-linear interpolation, as static
interpolation is then straightforward [3].

Across interpolation techniques, one typically uses a sin-
gle set of fixed interpolation weights, with one weight per
component model. This seems less than ideal; e.g., intuitively,
the best weights for an n-gram should depend on the num-
ber of history counts present in each component training set.
In this paper, we investigate whether we can improve static
log-linear interpolation for Model M by allowing interpola-
tion weights to vary across the model. We present a gen-
eral static parameter interpolation framework for exponen-
tial n-gram language models in which interpolation weights
are computed for each n-gram by using a weight prediction
model. Given a rich representation of n-gram features as in-
put, the weight prediction model is trained to optimize the
perplexity of a held-out set. We evaluate several weight pre-
diction models, including a mixture of experts model [4], and
demonstrate significant gains as compared to standard log-
linear interpolation on a Broadcast News task.

We first provide a brief review of related work in Sec-
tion 2. Section 3 describes exponential language models and
Model M. We present our proposed interpolation approach in
Section 4. Results and analysis are discussed in Section 5 and
conclusions are presented in Section 6.

2. RELATED WORK

Combining training sets from multiple sources can be viewed
as an instance of language model adaptation, which deals
with the general task of handling training data not matched
to test data. An extensive survey of the field can be found

4911

in [5]. The most widely-used method for combining multiple
data sources is to use linear interpolation to combine separate
models built from each source, due to its good performance
over a wide range of situations and its ease of implementa-
tion. While dynamic linear interpolation can be applied to any
type of language model, it incurs a run-time time and memory
penalty as noted earlier.

In most work, a single fixed weight is used for each model,
but allowing interpolation weights to vary by language model
history has also been considered [6, 7, 8]. In the general case,
interpolation weights can depend on an arbitrary amount of
history, in which case static interpolation is not tractable. Re-
cent work includes [9] where word n-gram models are com-
bined via static linear interpolation and where weights are
expressed as a log-linear function of features of the history.
The parameters of the log-linear function are trained to op-
timize the perplexity of a held-out set. Word-error rates im-
provement of up to 1.0% absolute are achieved on a lecture
transcription task as compared to using fixed interpolation
weights. In [10], context-dependent weights specific to word
or class n-gram histories are estimated for the linear interpo-
lation of word n-gram models. Modest but inconsistent gains
are achieved in perplexity and word-error rate on a Chinese
broadcast transcription task. We extend previous work on
non-fixed interpolation weights by examining Model M in-
stead of word n-gram models; by evaluating log-linear rather
than linear interpolation [11]; and by using a novel weight
prediction model with novel input features.

3. BACKGROUND

In this section, we briefly review exponential language
models including Model M. For a set of rarget symbols
y € Y and history symbols x € X, an exponential model
with parameters A = {)\;} and corresponding features

fi(z,y), ..., fr(z,y) has the form
_ (i Nifi@,y)
Pa(ylz) = 72 () (M
F
Zn(z) = Z eXP(Z Aifi(z,y)))
yey i=1

In language models, the target y is typically the current word
w; and the history z is some number of previous words
Wj—n41 " Wj—1.

An exponential word n-gram model for n = 3, say, con-
tains binary features f(x y)(-) for (x,y) of the forms

(€,w5), (wj—1,w;), (Wj—2wj—1,w;) 3)

where f(xy)(2,y) = 1 iff the history = ends in x and the tar-
get word y is y. We only consider features that correspond
to n-grams that occur at least once in the training corpus.
Model M is a class-based n-gram model composed of two

separate exponential models, one for predicting classes and
one for predicting words. Let P,,(y|\) denote an exponential
n-gram model and let P, (y|A1, A2) denote a model contain-
ing all features in Pog(y|A1) and Py (y|A2). If we assume that
every word w is mapped to a single word class, the trigram
version of Model M is defined as

P (wjlwj—ow;—1) = Pag(cjlej—2cj—1,wj—2wj—1)X

Pog(wj|wj—ow;j—1c5) 4)

where c; is the word class of word w;. Model M has achieved
among the largest word-error rate improvements over word n-
gram models ever reported, with gains as high as 3% absolute
as compared to a Katz-smoothed trigram model [1].

We train exponential language models using a combina-
tion of ¢; and E% regularization [12]; i.e., parameters \; are
chosen to optimize

« 1 9
O€1+K% (A) = IOg PPirain + B Xl: |)\z| + % ZZ:)‘z 5

for some « and o, where PPy, is the training set perplexity
and D is the size of the training set in words [13].

4. GENERALIZED PARAMETER INTERPOLATION

Consider the log-linear interpolation of K exponential mod-
els, the kth model having parameters Ay = {Ag;}. We as-
sume each model shares the same features f;(-) where A\g; =
0 if feature ¢ is missing in model k. In the simplest case, we
use a fixed interpolation weight wy, for the kth model to create
a merged model with parameter vector A™®:

K

mrg _

)‘i = E)\;ﬂwk
k=1

We can optimize the interpolation weights wy, to minimize the
perplexity of held-out data; note that weights need not sum to
1. The interpolated model can be written as

exp(Limy A fil,)
Zmrg(x)

F K
exP (i1 2ok—1 MriWi fi(2,Y))
Zineg ()
K F
exp(D ey We(Doimq Akifi(x,y)))
= (6)
Zun ()
where Z., () ensures probabilites sum to 1 as in Eq. 2. As
can be seen from Eq. 6, optimizing the interpolation weights
wy, is equivalent to finding optimal weights for a model with
K features f;(x,y) where

Pmrg(y|x) =

F
fl:(xvy) = Z)‘/ﬂfl(xvy)
=1

4912

Intuitively, we can improve upon fixed interpolation
weights by allowing weights to vary with the language model
history x. For example, if a history = does not occur in the
training set of the kth model, one ought to use a lower weight
for that model for events with that history. To this end, we
generalize Eq. 4 by not requiring A} to be a linear function
of the \;’s; i.e., we take
A = G(Ai, Mgy -

K3

i £(0)

where (3 is an arbitrary function, and where f (i) contains ad-
ditional information related to feature ¢. For example, f (7)
could contain the order of the n-gram associated with f;(+);
the count of that n-gram in each component training corpus;
or the count of the predicted word in each corpus. We refer to
the joint vector

as features of features. The interpolated model can then be
written as

exp(Xi, G(F(0)) fil=,y))

Pmrg(y|$) = Zmrg(x)

When training the parameters of G(-) to maximize the log
likelihood of held-out data, we need only consider those fea-
tures f;(-) that are active in the held-out set. For exponential
models, the partial derivatives of the log likelihood £ can be
written as

oL
dG(f (i)

where Eyq[f;] is the count of feature f;(-) in the held-out set
and Eiy[f;] is the expected count under the model. The pa-
rameters of GG can be trained using backpropogation; i.e., the
gradient with respect to these parameters can be derived from
Eq. 4 using the chain rule.

Alternatively, we can treat G as a regression model which
is trained on the held-out set with the features of features
representations f(i) as the input. The output target y; for
training instance ¢ with feature representation f (1), is the
predicted weight for feature f;(-) in the interpolated model.
The objective function for training the regression model is
> yi%. Note that the target values need to be reesti-

= Enalfi] = Emrglfi]

mated in each training iteration as the model G is updated.
We use this formulation to represent and train our models
within the Theano framework [14].

4.1. Interpolation Models

We consider the following types of interpolation models G.
In the simplest model, Linear, we take

Gin(f (i) = f(i) - w @)

where the parameters are the feature weights w. The next
model, Linear-II, is a weighted model combination approach
and assumes that f(4) consists only of A;’s; i.e., the vector
f (i) containing additional information is empty. This model
is similar to the linear model except that for each feature f;(-),
only the subset of models S; = {k s.t. \g; # 0} with nonzero
Ak; are given a vote in the model combination:

CJlm Il)\kz (8)
,; Zk' s; Wk
Intuitively, models for which A\;; = 0 will not have much

useful information in determining ;€.

The final model, MLP-MOoE, is a mixture of experts ar-
chitecture [4] using a multilayer perceptron (MLP) as the
gating function and the component models as the “experts”.
The MLP gating function has a softmax output which given
f(i), predicts the probability (or weight) py; of each ex-
pert (or component model). As this architecture can dy-
namically adapt interpolation weights in an unconstrained
manner, adding some sort of regularization seems prudent.
We scale the py;’s and add an offset to get the final weight
wk; = a(pr; + Pr), and we take

Z)\kzwkz (9)

Note that v is a global scale factor and Sy, is a per model offset
term; the « and §j’s are trained on the held-out set along with
the parameters of the MLP. The presence of « and Sy, allows
the model to trivially represent a linear model.

GMLP-MoE (

5. RESULTS

We present results on an English Broadcast News task. The
language model training text for our experiments consists of
a total of 300M words from the following four data sources:
GALE Phase 2 Distillation GNG Evaluation Supplemental
Multilingual data (2007EN), EARS BNO3 closed captions
(BNO03), 1996 CSR Hub 4 Language Model data (98T31),
and Hub 4 acoustic model training transcripts (Hub4). A
vocabulary of 84k words is used. We compute word-error
rates (WER’s) using lattice rescoring on a 2.5h rt04 evalu-
ation set containing 45k words. The held-out set consists
of 45k words of dev04 data. Building a separate unpruned
modified Kneser-Ney-smoothed word n-gram model on each
subcorpus and interpolating produces a WER of 13.0%.

We compare different interpolation schemes for Model
M’s built on the Broadcast News corpora. Dynamic linear in-
terpolation of Model M achieves a word-error rate of 12.3%,
an improvement of 0.7% absolute as compared to the word
n-gram baseline. Our goal is to see if we can acheive a sim-
ilar improvement via static log-linear interpolation with its
higher run-time efficiency. In our experiments, the features
of features representation f (i) comprises of the Ay, for the

4913

G word model class model
Linear 5.77 21.07
Linear-II 5.74 21.05
MLP-MoE 5.10 20.80

Table 1. Perplexity of word and class models for different in-
terpolation schemes.The interpolation schemes are described
in Section 4.

G PPL WER
Linear 116 12.7
MLP-MoE | 107 123

Table 2. Perplexity and WER for Model M with linear and
MLP-MOoE interpolation.

four models along with the normalized word count of the pre-
dicted token in each corpus and a single feature representing
the n-gram order of the feature. For the gating MLP func-
tion of the MLP-MoE model, we used a hidden layer of 9
units, equal to the size of f(i). The output softmax layer had
four output targets, one for each model, as described in Sec-
tion 4. In total, the MLP-MoE model contains 122 parameters
for both the word and class prediction models in Model M:
9 x 9 = 81 parameters for the weight matrix for the hidden
layer; 9 x 4 = 36 parameters for the output layer; and five
parameters for bias and scale at the output layer.

We first report the perplexities of the word model and
class model subcomponents of Model M. The interpola-
tion models were trained on dev04 and we report perplexity
on rt04. From Table 1, we see that MLP-MoE yields the
largest perplexity reductions: 6.2% and 1.3% for the word
and class models, respectively. Gains for the class model
may be smaller due to the large overlap of class n-grams
between different corpora. The model Linear-II slightly out-
performs Linear by restricting the interpolation to models
with nonzero \g;.

Next, we compare overall perplexity and WER for Linear
and MLP-MoE. As can be seen from Table 2, we acheive a
reduction in perplexity from 116 to 107 with the MLP-MoE
model. This perplexity reduction translates to a 0.4% absolute
reduction in WER. Thus, the statically interpolated Model M
created with MLP-MOoE interpolation matches the perplexity
(108) and WER (12.3%) achieved with dynamic interpola-
tion. On the development set dev04 used to train the interpo-
lation models, perplexity is reduced from 117 to 106, compa-
rable to the reduction on the test set. This suggests that the
MLP-MoE model is not overtrained.

The mixture of weights model dynamically adapts the in-
terpolation weight of each model for each feature. We looked
at the average weights assigned to each model by MLP-MoE
and compared that to the fixed weight distribution of the lin-

G Hub4 BN 98T31 2007
Linear 005 071 009 020
MLP-MoE | 0.02 049 029 0.24

Table 3. Model weights for linear interpolation and average
model weights for MLP-MOoE interpolation.

ear model (Table 3), for the Model M word model compo-
nent. Although the two models choose the same corpus for
the highest and lowest (average) weights, the weight distri-
bution of the MLP-MoE appears much smoother. To con-
firm this, we also looked at the maximum weight assigned to
any model per feature. We found that the average maximum
weight assigned by the MLP-MoE model was 0.52, which
would imply that on average, the domainant corpus had close
to half of the total weight mass. This shows that the MLP-
MoE model is smoother than the linear model, which always
places a weight of 0.71 on one corpus.

6. CONCLUSION

While the performance of word n-gram models has been sur-
passed many, many times in the literature, these models re-
main the technology of choice in practical applications for a
variety of reasons, including their speed and their amenabil-
ity to static linear interpolation. Recently, Model M has been
shown to yield superior performance and to be only a few
times slower (when unnormalized) [13]. However, static lin-
ear interpolation for Model M is not possible, and static log-
linear interpolation sometimes gives poorer performance. In
this work, we show that the performance of log-linear interpo-
lation can be improved through the use of non-fixed interpola-
tion weights, to match the performance of linear interpolation
on Broadcast News. With static interpolation, the combined
model is itself a single Model M, so the run-time implemen-
tation need not be changed and there is no penalty in speed or
memory. In other words, significant gains in word-error rate
over a word n-gram model (0.7% absolute) can be had with
only a modest speed and memory cost, in contrast to other
technologies such as neural net language models [15]. While
gains are not as large as in related work on lecture transcrip-
tion [9], this is to be expected as state-of-the-art systems for
Broadcast News have been heavily optimized.

7. REFERENCES

[1] Stanley F. Chen, “Shrinking exponential language models,” in
Proceedings of NAACL-HLT, 2009, pp. 468-476.

[2] Andreas Stolcke, “SRILM — an extensible language modeling
toolkit,” in Proceedings of ICSLP, 2002, vol. 2, pp. 901-904.

[3] Abhinav Sethy, Stanley Chen, Ebru Arisoy, Bhuvana Ram-
abhadran, Kartik Audkhasi, Shrikanth Narayanan, and Paul

Vozila, “Joint training of interpolated exponential n-gram mod-
els,” in Proceedings of ASRU, 2013.

4914

[4] Robert A. Jacobs, Michael 1. Jordan, Steven J. Nowlan, and
Geoffrey E. Hinton, “Adaptive mixtures of local experts,” Neu-
ral Computation, vol. 3, no. 1, pp. 79-87, 1991.

[5] Jerome R. Bellegarda, “Statistical language model adaptation:
review and perspectives,” Speech Communication, vol. 42, no.
1, pp. 93-108, 2004.

[6] M. Weintraub, Y. Aksu, S. Dharanipragada, S. Khudanpur,
H. Ney, J. Prange, A. Stolcke, F. Jelinek, and L. Shriberg, “Fast
training and portability,” in Language Modeling Summer Re-
search Workshop: Technical Reports, 1995.

[7] Rukmini Iyer, Mari Ostendorf, and Herbert Gish, “Using out-
of-domain data to improve in-domain language models,” IEEE
Signal Processing Letters, vol. 4, no. 8, pp. 221-223, August
1997.

[8] Adam Kalai, Stanley Chen, Avrim Blum, and Ronald Rosen-
feld, “On-line algorithms for combining language models,” in
Proceedings of ICASSP, 1999.

[9] Bo-June Hsu, “Generalized linear interpolation of language
models,” in Proceedings of ASRU, 2007, pp. 136-140.

[10] X.Liu, M.J. F. Gales, and P. C. Woodland, “Context dependent
language model adaptation,” in Proceedings of Interspeech,
2008, pp. 837-840.

[11] Dietrich Klakow, “Log-linear interpolation of language mod-
els,” in Proceedings of ICSLP, 1998, pp. 1695-1698.

[12] Jun’ichi Kazama and Jun’ichi Tsujii, “Evaluation and exten-
sion of maximum entropy models with inequality constraints,”
in Proceedings of EMNLP, 2003, pp. 137-144.

[13] Stanley E. Chen, Lidia Mangu, Bhuvana Ramabhadran, Ruhi
Sarikaya, and Abhinav Sethy, “Scaling shrinkage-based lan-
guage models,” Tech. Rep. RC 24970, IBM Research Division,
April 2010.

[14] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph
Turian, David Warde-Farley, and Yoshua Bengio, “Theano: A
CPU and GPU math expression compiler,” in Proceedings of
the Python for Scientific Computing Conference (SciPy), June
2010, Oral Presentation.

[15] Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukas Burget,
and Jan Cernocky, “Strategies for training large scale neural
network language models,” in Proceedings of ASRU, 2011, pp.
196-201.

4915

