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ABSTRACT

Aphasia is a common language disorder which can severely
affect an individual’s ability to communicate with others.
Aphasia rehabilitation requires intensive practice accompa-
nied by appropriate feedback, the latter of which is difficult
to satisfy outside of therapy. In this paper we take a first step
towards developing an intelligent system capable of provid-
ing feedback to patients with aphasia through the automation
of two typical therapeutic exercises, sentence building and
picture description. We describe the natural speech corpus
collected from our interaction with clients in the University of
Michigan Aphasia Program (UMAP). We develop classifiers
to automatically estimate speech quality based on human per-
ceptual judgment. Our automatic prediction yields accuracies
comparable to the average human evaluator. Our feature se-
lection process gives insights into the factors that influence
human evaluation. The results presented in this work provide
support for the feasibility of this type of system.

Index Terms— aphasia, speech-language disorder, ma-
chine learning, clinical application

1. INTRODUCTION

In the US, there are approximately one million people with
aphasia and more than 100,000 acquire it every year due to
brain injury, most commonly from a stroke 1. Individuals
with aphasia exhibit high variability in their specific impair-
ments. Those with non-fluent aphasia produce slow, halting,
and effortful speech. In contrast, those with fluent aphasia
can speak effortlessly but their sentences contain jargon and
are often void of meaning. Some may have problems with
word-finding (anomia) or motor speech production (apraxia).
In general, most aphasia patients have speech production im-
pairments and some form of language comprehension deficit,
making social interaction difficult and frustrating.

Traditional treatment for aphasia involves individual ther-
apy with trained Speech-Language Pathologists (SLPs). Indi-
vidual therapy has been shown to be most effective in help-
ing patients regain language skills when carried out at high
frequency and intensity [1]. However, not all patients with

1http://aphasia.org/?q=content/aphasia-faq

aphasia can achieve the optimal practice frequency and in-
tensity through therapy alone due to financial limitations and
scheduling constraints. In addition to therapy, patients often
practice on their own using commercial software programs
specifically designed for aphasia treatment. While the effect
of computer use in aphasia rehabilitation is generally positive
[2–4], most programs do not provide meaningful feedback to
patients regarding their verbal output during the course of an
exercise. For example, some programs let patients play back
their own speech but do not provide any qualitative analysis of
said speech. This lack of feedback may cause patients to de-
velop bad habits over time, which will be further exacerbated
by infrequent interaction with the SLPs.

We aim to address this issue by developing an intelligent
system capable of providing automatic feedback to patients
about their verbal output during practice, thus improving the
effectiveness of in-home exercises to support traditional ther-
apy as needed. As a first step, we partnered with the Uni-
versity of Michigan Aphasia Program (UMAP) to develop a
mobile application that includes the therapeutic exercises of
sentence building and picture description. We collected over
two hours of aphasic speech from six UMAP clients while
they interacted with our application. After data collection, we
extracted speech features for each utterance and trained au-
tomatic classifiers to estimate the quality of speech based on
scores assigned by human evaluators. The automatic predic-
tion achieved comparable accuracies with human scoring. In
addition, feature selection results give insights into the fac-
tors that influenced human evaluation. The novelty of this
work lies in the development of new assistive technology for
aphasia rehabilitation, which includes data recording, a set of
criteria for assessing aphasic speech quality, and the analysis
of how automatic evaluation differs from that of humans.

2. RELATED WORK

Processing aphasic speech for therapeutic and diagnostic pur-
poses has been the subject of several previous works. Abad et
al. [5] used keyword spotting to recognize phrases spoken by
aphasia patients during word naming exercises. Their work
differs from ours in two ways. Firstly, their targeted users are
individuals with aphasia who have anomia but no difficulties
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with auditory comprehension or speech-language production.
In contrast, our targeted users may have difficulties in both.
Secondly, their work aims to recognize spoken words, while
ours attempts to estimate speech quality. Other works focused
on the medical diagnosis for subtypes of aphasia and related
disorders [6–8], unlike ours which targets rehabilitation.

This work adopts techniques used in [8–10]. Black et al.
[9] extracted speech features to predict children’s high-level
reading ability. Wang et al. [10] used transcript-based features
to predict the severity of mispronunciation. Both works uti-
lized fine-grained information about phonetics and common
letter-to-sound mistakes. This technique is challenging to ap-
ply to our target population whose pronunciation errors are
not systematic. Fraser et al. [8] used feature selection to clas-
sify two subtypes of primary progressive aphasia. Their text
features capture the complexity of patients’ narratives, which
is not applicable to our work because exact transcriptions are
difficult to obtain and the utterances are simple in structure.

3. DATA

3.1. Mobile Application

Our mobile application is the primary tool for data collection.
Designed to run on Android tablet devices, it features exer-
cises modeled after picture description, an activity commonly
administered by SLPs in UMAP during individual therapy.
The activity helps patients practice expressive communica-
tion skills, such as word-finding, sentence construction, use
of appropriate verb tenses, and articulation of target words. In
the application, patients are presented with a picture stimulus
and asked to describe it verbally either using predefined op-
tions or in their own words. Figure 1 shows a sample exercise
with predefined options. We allow users to adjust the diffi-
culty level for every exercise. We also utilize text-to-speech
to provide auditory feedback in addition to visual and textual
information as our users may have difficulties with reading
and/or auditory comprehension.

Fig. 1. Screenshot of the Sentence Construction exercise.

3.2. Data Collection

For this pilot study we recruited six individuals attending
UMAP who have aphasia and do not have cognitive impair-

Age, Gender Diagnosis Data AQ

50, Female expressive 122 utterances
(16.92 mins)

91.6
(mild)

70, Male fluent,
anomia

375 utterances
(41.17 mins)

75.7
(mild)

49, Male non-fluent,
anomia

146 utterances
(23.82 mins)

65.6
(moderate)

49, Male fluent,
apraxia

112 utterances
(13.79 mins)

49.9
(severe)

68, Male expressive,
receptive

81 utterances
(10.15 mins)

43.9
(severe)

50, Male non-fluent,
apraxia

211 utterances
(21.75 mins)

42.6
(severe)

Table 1. Subject breakdown of the dataset.

ment. UMAP offers an intensive therapy program which,
for full-time clients, typically involves 40 hours of speech-
language therapy a week for four weeks. A team of research
staff consisting of four undergraduate students sat individu-
ally with the patients during lunchtime and provided support,
as needed, while they completed the exercise on the mobile
application. The research team received training from UMAP
staff regarding how to assist individuals with aphasia. Our
goal was to collect natural speech recordings that best resem-
ble the type of data the application would have seen had the
patients used it on their own. We adjusted the difficulty based
on recommendations from the SLPs and used the tablet’s
built-in microphone for all recordings. Table 1 lists the age
and gender information, diagnosis, amount of recorded data,
and Aphasia Quotient (AQ) for each subject in our dataset.
The Aphasia Quotient [11] is a commonly used measure for
the severity of aphasia. In total the dataset contains over two
hours of aphasic speech. Collecting this kind of data is partic-
ularly challenging because individuals with aphasia generally
require more time and effort to produce a sentence.

3.3. Data Annotation

3.3.1. Transcription

Each utterance was transcribed by one of the four members of
the research staff into time segments belonging to four broad
categories: (1) Non-Speech consists of sounds not spoken by
the patient such as silence and audible background noise, (2)
Filler consists of filled pauses such as “um” and “eh”, (3)
Vague-Speech consists of patient’s speech activities which are
unclear, and (4) Clear-Speech consists of speech segments
that can be easily understood. Exact transcription of apha-
sic speech is challenging due to the patient’s speech-language
impairment. We are interested in annotation labels that can
be extracted with relative ease and result in high agreement
across annotators to enable autonomous tablet-based interac-
tion. In this work we are only concerned with which category
a sound segment belongs to, not its exact speech content. We
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estimated the reliability of annotation by having all evalua-
tors transcribe a common set of 60 sentences, 10 from each
patient. The mean Cohen’s kappa score with respect to the
category labels is 0.92, a very high agreement level.

3.3.2. Qualitative Scores

In order to provide feedback, the system must be able to esti-
mate the quality of speech produced by patients. With guid-
ance from the SLPs, we created four criteria for evaluating a
patient’s speech: Clarity, Fluidity, Effort, and Prosody. We
asked each of the four evaluators to rate every utterance on a
scale from 1 to 2 for Prosody and 1 to 4 for the other three
criteria. A lower score denotes lower quality and vice versa.
A score of 0 may be assigned to utterances without enough
speech activity for analysis. We clustered the scores for Clar-
ity, Fluidity, and Effort in two additional ways, under the hy-
pothesis that the 4-class system might not be optimal for au-
tomatic classification. In the 2-class scheme, {1,2} and {3,4}
are collapsed into two groups, thus categorizing an utterance
as low- or high-quality. In the 3-class scheme, {2,3} becomes
one category while 1 and 4 remain the same, thus separating
low- and high-quality utterances from ambiguous ones.

Following the work of Black et al. [9], we constructed a
“de-noised” set of ground-truth labels by averaging the scores
across each evaluator and rounding to the closest integer.
These ground-truth scores represent the collective opinions
and are used to train our automatic classifiers. Utterances
with an average score of 0 are not used because they indicate
insufficient speech activity for analysis. As the scores are
unbalanced, we evaluate a classifier’s performance based on
its unweighted average recall (UAR), defined as the mean
per-class accuracy. The goal of the classifiers is to achieve
the same level of performance as that of individual evaluators,
shown in Table 2. This accounts for the challenges associated
with the perceptual judgment of speech quality.

2-class 3-class 4-class
Clarity 71.0 ± 5.3 61.6 ± 9.0 51.2 ± 8.2
Fluidity 75.2 ± 3.7 64.2 ± 4.8 54.6 ± 3.5
Effort 76.7 ± 5.3 63.6 ± 4.5 55.5 ± 4.0
Prosody 62.3 ± 7.5 N/A

Table 2. Mean and standard deviation of unweighted average
recall (%) of human evaluators. The average scores are used
as ground truths and each evaluator is viewed as a classifier.

4. METHOD

4.1. Feature Extraction

4.1.1. Transcript Features

We hypothesize that the transcripts encode information about
the four aspects of speech quality that we seek to model. For
instance, we expect a high number of pauses to represent dis-
connected speech and thus correspond to low Fluidity scores.

For each utterance we extracted the following features from
its transcript: duration of Non-Speech, Filler, Vague-Speech,
and Clear-Speech, total duration, voiced duration, speech du-
ration, start time of first speech activity, and fraction of Clear-
Speech over speech duration. We also extracted long pause (>
0.4s) and short pause (> 0.15s, ≤ 0.4s) count [7], along with
phonation rate and mean pause duration [12].

4.1.2. Acoustic Features

Acoustic features contain lower-level information about the
sound properties. For each voiced segment in an utterance’s
transcript, we extracted the mean and variance of intensity,
jitter [13], mean and variance of fundamental frequency (F0)
[7], mean and variance of the first three formants (F1, F2, F3),
mean instantaneous power, mean and maximum first autocor-
relation function, skewness, kurtosis, zero-crossing rate, and
shimmer [8]. The segments are weighed by duration and their
weighted average yields the features for the entire utterance.
We expect some features to correlate directly with our tar-
geted speech qualities. For example, high jitter is associated
with a harsher voice [14] and may equate to low Effort scores.

4.2. Classification

We partitioned the dataset using leave-one-subject-out cross-
validation, motivated by the assumption that our applica-
tion must be able to generalize beyond individual speakers.
To avoid overfitting, we performed feature selection on the
training set of each fold using the minimum-redundancy-
maximum-relevance (mRMR) method, which outputs the
subset of features that correlate well with the class label but
not with each other [15]. mRMR was also used in Fraser
et al. [8], yielding good results in classifying subtypes of
primary progressive aphasia. We evaluated each fold using
several commonly-used classifiers, including C4.5 Decision
Tree, Logistic Regression, Naive Bayes, Random Forest,
and Support Vector Machine. Since our dataset is relatively
small, we did not do model selection and instead used the
default settings specified in the Weka toolkit [16]. As our
dataset grows, we will explore model selection and speaker-
dependent adaptation to improve classification performance.

5. RESULTS AND DISCUSSION

5.1. Selected Features

We ran the mRMR feature selection algorithm on the com-
plete dataset to identify the most representative features for
each score category. Table 3 lists the selected features across
all scoring schemes (2, 3, and 4-class). The algorithm se-
lected mostly transcript features in all categories. This trend,
which was also observed in [8], suggests that human evalua-
tors rely more on the high-level features captured by the tran-
scripts. Only two or fewer acoustic features were selected for
Clarity, Fluidity, and Effort, but five were chosen for Prosody.
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Clarity fillerDuration, clearSpeechDuration, clearSpeechRate, phonationRate

Fluidity totalDuration, longPauseCount, clearSpeechDuration, clearSpeechRate, phonationRate, vagueSpeechDuration,
nonSpeechDuration, meanIntensity

Effort fillerDuration, totalDuration, longPauseCount, clearSpeechDuration, vagueSpeechDuration, speechDuration,
nonSpeechDuration, voicedDuration, meanIntensity, zeroCrossingRate

Prosody fillerDuration, speechDuration, clearSpeechDuration, nonSpeechDuration, clearSpeechRate, voicedDuration,
phonationRate, meanF1, skewness, meanF0, stdDevF0, meanIntensity

Table 3. Features selected by mRMR across all grouping schemes (2, 3, and 4-class). Italic denotes acoustic features.

This suggests that our high-level transcript features did not
capture Prosody as strongly, forcing human evaluators to fall
back on the low-level acoustic features.

The specific features selected provide insights into how
human evaluators assessed quality of speech. The duration of
Clear-Speech, which denotes the amount of speech perceived
as easily understood, is present in all four categories. Long
pause count is present in Fluidity and Effort, suggesting that
connected speech tends to be perceived as more fluid and ef-
fortless. The mean and standard deviation of the fundamental
frequency (F0) only appear in Prosody, hinting a connection
to intonation, i.e. pitch variation. These results can be po-
tentially communicated back to patients in real-time on an
utterance basis, thus guiding their practice sessions. In future
work we will explore ways to realize this idea.

5.2. Classification Results

Our classifiers’ performance is assessed in relation to that of
the average human evaluator. We use binomial tests to deter-
mine if the automatic classification is significantly different
from human scoring. Specifically, we treat each utterance as
an independent random experiment; the average human UAR
denotes the hypothetical chance of success for each trial and
the classifier’s UAR is used to estimate the observed num-
ber of successes. For a two-tailed binomial test, if p > 0.05,
the prediction result is deemed not significantly different from
human scoring. Otherwise, because the binomial distribution
is symmetric, we can conclude that the automatic prediction
is significantly better (or worse) than human (one-tailed test,
p = 0.025). Table 4 lists the UAR of the best classifier for
each category along with its relation to the average evaluator.

The classifiers are better at classifying Clarity and Prosody
than Fluidity and Effort. This suggests that our feature set
does not capture as much information about the latter two
properties. The results also show that automatic classification
achieves better performance when there are fewer classes.
We hypothesize that this improvement is caused by the need
to make fewer fine distinctions as well as the increase in
per-class training data, a result of collapsing scores into
fewer categories. This hypothesis is supported by the fact
that Naive Bayes, which has been shown to work well on
smaller datasets [17], is the predominant method of choice in
3-class and 4-class. In contrast, the best 2-class results are
all achieved by Random Forest, an ensemble classifier that

2-class 3-class 4-class
Clarity

(size: 991) 73.7∗ (RF) 57.8† (NB) 50.0∗ (NB)

Fluidity
(size: 980) 69.2† (RF) 64.5∗ (NB) 48.3† (RF)

Effort
(size: 982) 77.9∗ (RF) 59.3† (NB) 50.2† (NB)

Prosody
(size: 971) 65.6\ (RF) N/A

∗ = not sig. different \ = sig. higher † = sig. lower
RF = Random Forest NB = Naive Bayes

Table 4. UAR (%) of the best classifier for each category and
how it compares to the average human evaluator.

aggregates results from multiple decision trees. Interestingly,
the way Random Forest obtains its final prediction roughly
corresponds to how our ground-truths were computed from
human evaluators. Moreover, Random Forest performs better
when there is higher variance in human UARs. This is con-
sistent with the results in Breiman [18], which showed that
the algorithm works best when the trees are uncorrelated.

6. CONCLUSION AND FUTURE WORK

Our results indicate that it is possible to construct an auto-
matic classifier comparable to the average human for estimat-
ing each of these four aspects of speech quality. Feature selec-
tion suggests that humans rely more on high-level transcript
features during evaluation, and that acoustic features capture
Prosody more strongly than Clarity, Fluidity, and Effort.

In future work we will lift the dependency on manually la-
beled transcripts through the automatic categorization of time
segments. As our dataset grows, we will explore model selec-
tion and speaker-dependent adaptation to improve classifica-
tion performance. Lastly, we will investigate ways to provide
patients with concrete feedback based on the output of feature
selection and automatic classifiers.
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