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ABSTRACT
Recent studies have shown the importance of using online videos
along with textual material in educational instruction, especially for
better content retention and improved concept understanding. A key
question is how to select videos to maximize student engagement,
particularly when there are multiple possible videos on the same
topic. While there are many aspects that drive student engagement,
in this paper we focus on presenter speaking styles in the video. We
use crowd-sourcing to explore speaking style dimensions in online
educational videos, and identify six broad dimensions: liveliness,
speaking rate, pleasantness, clarity, formality and confidence. We
then propose techniques based solely on acoustic features for auto-
matically identifying a subset of the dimensions. Finally, we perform
video re-ranking experiments to learn how users apply their speak-
ing style preferences to augment textbook material. Our findings
also indicate how certain dimensions are correlated with perceptions
of general pleasantness of the voice.

Index Terms— speaking style, speaking rate, liveliness

1. INTRODUCTION

In the context of education, the proliferation of low-cost and increas-
ingly accessible tablet devices [1] present important new opportuni-
ties. Replacing traditional textbooks with tablet-based digital con-
tent can enable “anytime, anywhere learning” across the globe [2].
While many current electronic textbooks tend to be digital versions
of their printed counterparts, recent research has shown the value of
augmenting content with relevant supplementary materials includ-
ing text, images and videos mined from the web [3, 4, 5, 6, 7, 8].
Web-based supplementary materials obviously need to be content
appropriate, but all else being equal, they should also be as engaging
as possible to the student using them. As multiple different online
videos are often available to teach a particular concept, a question
arises: how can they best be sorted based on a particular user’s pref-
erences?

In this study we assume that the set of relevant videos for a text-
book is already identified (a research question in and of itself) and
focus on the question of a user’s preference for the speaking style
in the video. We are interested in the presenter’s speaking style be-
cause it is a dimension that cross-cuts domains, and one that has
both a preference aspect as well as an impact on learning. For ex-
ample some students may prefer a more serious tone, while others
prefer an upbeat presentation. And for a topic that a student is hav-
ing difficulty with, a presenter with a fast speaking rate may make
it difficult to learn the material. The end goal is to allow users to
sort retrieved videos according to their preference along the speak-
ing style dimensions that we provide. As a first step to this end, we
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look at large sets of single-speaker short educational videos matched
for various topics. We also restrict our features to those that can be
extracted without using lexical information. While words are clearly
an important component of style and should also be studied, acous-
tic features obviate the need for a speech recognizer and provide a
useful starting point for style characterization.

A number of recent studies have focused on analyzing speaking
styles. Using subjective evaluations, Rosenberg and Hirschberg [9]
identified personal attributes that were highly correlated with per-
ceived charisma. They also identified acoustic, prosodic and lexi-
cal features relevant for this task. In similar studies, Strangert [10];
Strangert and Gustafson [11] presented analyses to differentiate be-
tween good and bad speakers. The recent Interspeech paralinguistic
challenge included a task on speaker likability as an attempt to pro-
vide predictive models for identifying good speakers [12, 13].

The question of preference for speaking style in educational
videos is a new and open area. To explore the dimensions of user
preference, we conduct a crowd-sourcing study to identify what
types of information users report when listening to different pre-
senters on the same topic (§ 2). In further studies we focus on two
dimensions that show good agreement for crowd-based annotation:
liveliness and speaking rate. We then look at how well a set of
simple acoustic features can predict these dimensions (§ 3). We
present extensive experiments using educational videos from the
wild (e.g., YouTube), relevant to sections in a textbook, to showcase
the efficacy of our approach (§ 4). We also study how these two
dimensions correlate with the pleasantness of the voice (§ 4).

2. DIMENSIONS OF SPEAKING STYLES

We first sought to identify speaking style dimensions that listen-
ers perceive when viewing an educational video. To this end we
performed a large-scale user study using Amazon mechanical Turk
(AMT). Each human intelligence task (HIT) corresponded to a judge
watching an educational video and reflecting on the speaker char-
acteristics using three phrases of his/her own choice. Each HIT
was judged by seven evaluators, and we obtained judgments for 100
unique educational videos. This experiment yielded a list of over
200 unique descriptors. Many of the descriptors appeared to re-
flect similar underlying characteristics. We manually binned these
descriptors into six dimensions. Table 1 depicts these dimensions,
examples from the corresponding descriptors and the proportions in
which were referred by the evaluators. Speech liveliness (or lack
thereof) plays the most significant role in these videos and judges
described it using varied descriptors including boring, dull, dynamic,
flat, monotonous, lively and toneless. The second most frequent di-
mension is pleasantness of the voice, which seems to be a function of
other characteristics of the voice such as liveliness. Other frequently
reported characteristics were voice clarity, formality, confidence, and
speaking rate. Note that we will use the term ”speaking rate” as a
dimension (speaker is slow or fast) because it was used this way
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Table 1. Speaking style dimensions identified using large scale human judgments

Inferred Dimensions Example descriptors used by the judges Relative proportions

liveliness (dull vs. lively) boring, dull, dynamic, flat, lively, monotonous, toneless .26
pleasantness (pleasant vs. unpleasant) awesome, good, ineffective, interesting, unappealing, unpleasant .25
speaking rate (slow vs. fast) fast, quick, slow, speedy .14
clarity (unclear vs. clear) blurry, clear, unclear .14
formality (formal vs. casual) bookish, casual, conversational, narrative .12
confidence (hesitant vs. confident) bold, confident, hesitant, insecure, unsure, wobbly .10

by annotators–even though it is also used to refer to specific feature
metrics (§ 3).

3. AUTOMATIC DETECTION OF SPEAKING STYLES

We explored methods to learn functions that score videos for two
of the dimensions frequently identified by annotators: liveliness and
speaking rate. In particular, we build two independent models that
take an audio segment as input and score it for a speaker’s liveliness
and speaking rate. The ground truth Likert-scale ratings of each di-
mension is collected through subjective evaluations (§ 4.1). We used
least absolute shrinkage and selection operator (LASSO) regression
[14] as the mapping model. In particular, the regressor captures the
relationship between features, φ(x), extracted from the segment x
and speaking rate (or liveliness) scores yi through the functional
form y = wTφ(x), given some annotated training data xi ∈ X .
The parameters w are learned by solving the optimization function:

w∗ = argmin
w

λ‖w‖1 +
∑

i

(wTφ(xi)− yi)
2

(1)

where λ is a regularization parameter that trades off model sparsity
and squared error, which is set using 5-fold cross-validation in the
training set. The unique optimum of Eq. 1 can be found via least an-
gle regression. φ(x) corresponds to acoustic and prosodic features
derived from the audio segment; these are summarized in Table 2 and
described next. Since we have a large feature set, LASSO regres-
sion is used to avoid overfitting and also to perform feature analysis
(§ 4.3).

Features: The first column in Table 2 summarizes the features
used. To capture voice liveliness, we extracted a set of statistics
from fundamental frequency (F0) and intensity contours represent-
ing their dynamic ranges. A peak finding algorithm [16] is used to
extract the peaks and valleys in the contours. Figure 1 illustrates the
detected valleys and peaks for a dull and a lively voice. The features
include F0 mean peak to mean valley distance (i.e., the distance be-
tween dashed lines in Figure 1), mean/max jump from a peak/valley
to the following peak, standard deviation of peaks in F0 contour, F0
distribution interquartile distances (i.e., Q2 −Q1 and Q3 −Q2) and
mean/max jumps from valley to peak in intensity contour. Jump is
defined as the distance along the vertical axis in the contours. F0
features representing dynamic range are normalized with respect to
gender. Mean short time discrete cosine transformation (DCT) of
the intensity contour is used to capture rhythmicity of the voice [17].
The amplitude of the first five DCT coefficients are extracted over
300-ms windows with 150-ms shift. Since voice liveliness can be
attributed to higher vocal effort, we have used openSMILE [18] to
extract the 50% spectral roll-off point. This is the frequency be-
yond which the accumulative signal energy exceeds 50% of total
signal energy, representing the spectral tilt. For each audio segment,
1st − centile (∼min), 99th − centile (∼max) and mean value of
50% spectral roll-off point over the voiced segments are included in
the feature set. Mean F0 segment length, number of F0 segments

Features
liveliness

speaking
rate

% +/- % +/-

Fundamental Frequency (F0)
mean peak to mean valley distance 95 + 4
interquartile distance (Q2-Q1) 100 + 33
interquartile distance (Q3-Q2) 99 + 66 +
max peak to peak jump 0 28
mean peak to peak jump 5 100 +
max valley to peak jump 0 1
mean valley to peak jump 0 29
standard deviation of peaks 100 + 100 +
mean segment length 71 - 76 +
number of segments 0 99 +
rising time ratio 100 + 27

Energy
mean short-term DCT0 100 + 100 +
mean short-term DCT1 0 29
mean short-term DCT2 0 19
mean short-term DCT3 0 16
mean short-term DCT4 0 63 +
mean of peak distance 3 100 +
standard deviation of peak distance 100 - 100 -
mean peak to mean valley distance 0 0
mean peak to peak jump 1 100 +
max peak to peak jump 54 + 86 +
mean valley to peak jump 87 + 1
max valley to peak jump 100 + 95 +

Spectral
1st-centile of 50% spect roll-off freq 100 + 92 +

99th-centile of 50% spect roll-off freq 100 + 100 +
mean of 50% spectral roll-off point 100 + 100 +

Estimations of Speaking Rate[15]
estimated articulation rate 100 + 100 +
estimated speaking rate 0 100 +

Table 2. Acoustic and prosodic features used. The percentage of
time in which the feature was selected by the LASSO regression
model across cross-validation folds and sign of the corresponding
coefficients to predict liveliness and speaking rate.

and mean distance between consecutive peaks in the intensity con-
tour are potential features for capturing speaking rate. In addition
to these low level features, we included estimations of speaking rate
based on syllable detection by peak-counting in the energy contour,
proposed by Jong and Wempe [15]. They defined speaking rate and
articulation rate as the number of syllables in energy contour per
time unit for entire utterance duration and entire duration exclud-
ing the silence, respectively. Our preliminary analysis showed that
mrate [19] as a measure of speaking rate does not yield high correla-
tion with the manual annotations in our corpus. This might be due to
the noisy samples in the videos. Given the high correlation between
the collected rates of liveliness and speaking rate (see Figure 2), we
decided to include all the features in the experiments for both tasks.
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Fig. 1. Detected peaks and valleys in F0 contour for (a) a speaker rated as dull, and (b) a speaker rated as lively. Dashed lines show mean
valley and peak values.

4. EXPERIMENTS

4.1. Setup

Data set: The training set consisted of educational videos relevant
to ten sections corresponding to four chemistry chapters from a high
school science textbook. The videos are mined from the web using
a variant of the COMITY algorithm [4]. This resulted in a train-
ing set of 100 videos, 10 from each section. We similarly created
a test set corresponding to three sections from a biology chapter in
the same book. Since these videos are user-uploaded educational
content created by self-appointed “teachers”, they exhibit wide vari-
ability in terms of various dimensions of speaking styles, and have
wide-ranging recording conditions, speaker accent, age and culture.
Both males and females are represented. For both training and test
sets, the only manual pre-processing we did is to remove videos that
have background music or multiple speakers, resulting in 79 and 27
videos, respectively.

To regularize the rating task over videos differing in length, and
to speed the annotation process, we created fixed-duration segments.
From a listening study we determined that a length of about 20
seconds was sufficient for judging speaking style in this task, as
long as segments did not contain long silent portions (while the
speaker was writing, for example). We segmented each into 20-
second segments such that each segment had no contiguous silent
regions longer than two seconds. For each video, we randomly
chose three non-boundary segments as its representative segments.
In the rest of the paper, the entire audio is referred to as session and
the 20-second snippets as segments. The models are trained on the
segment-level data.

Human judgments: We designed a HIT on AMT to label each seg-
ment for liveliness and speaking rate on a discrete scale between
zero and four, where zero was slow (or dull) and four was fast (or
lively). Each HIT contained three audio segments from three ran-
domly selected speakers. Our experimentation showed that present-
ing samples from multiple speakers helps the evaluators to calibrate
the rates by comparison. Each HIT is evaluated by seven judges. We
used similar approach to obtain judgments for the test set, but at the
video and not the segment level. We asked evaluators to ignore the
content of the videos in their ratings.

In order to capture the overall pleasantness of voice, we had each
video judged by nine evaluators as to whether they like the speaker’s
voice in the video as a teacher. Then, majority of the votes is used to
set the pleasantness label for the corresponding audio segment.

Figure 2 shows the average speaking rate and liveliness assigned
to each audio segment in the training set. For both dimensions, most
samples lie in the middle range indicating that a typical educational
video has average speaking rate and liveliness. We can see high
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Fig. 2. The average speaking speed and liveliness collected with
subjective evaluations for each audio segment. The audio segments
which are identified as bad speakers are marked with a cross sign.

positive correlation between speaking rate and liveliness (ρ = 0.66),
which is consistent with findings of Traunmuller and Eriksson [20].
However, the two dimensions capture different aspects of a speaker:
While average speaking rate can be accompanied by high liveliness,
average liveliness is less likely to be accompanied by high speaking
rate.

In the same figure, the samples with unpleasant voice are marked
with a cross sign. We can see that dull voices (i.e., liveliness<1) are
generally perceived as unpleasant, and speakers with fast speaking
rate or high liveliness are perceived as pleasant. Assigning the votes
for unpleasant and pleasant voice to -1 and 1 and taking the average
to have a single rating for pleasantness yields positive correlations
with ratings of liveliness (ρ = 0.49) and speaking rate (ρ = 0.33).
A similar connection has been made between charismatic speech and
ratings of being enthusiastic [9]. Further analysis shows that un-
pleasant speakers lying in the mid-range of speaking rate and liveli-
ness correspond to videos with accented speech and/or bad recording
conditions (e.g., distant microphone).

Evaluator agreement: We had 43 unique evaluators annotate all
of the data, with each evaluator rating a different number of seg-
ments. To quantify the inter-evaluator agreement, we computed the
average cross-correlation between ratings of each evaluator and av-
erage rating of the rest of the evaluators. We found this to be 0.5
and 0.48 for liveliness and speaking rate, respectively. This shows
agreements higher than the ones reported in [12] for speaker likabil-
ity. It has been previously shown that subjectivity of the ratings in
similar tasks often results in low inter-evaluator agreements [9, 10].
This is partly because most speakers fall in the middle ranges and
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Dimension
Cross-validation Test set
ρ MSE ρ MSE

liveliness 0.67 0.24 0.56 0.40
speaking rate 0.64 0.16 0.36 0.29

Table 3. Performance of our algorithm measured using Pearson cor-
relation (ρ) and mean squared error (MSE)

agreement is higher for the extremes, which we are most interested
in for this application.
Within video segment consistency: We also analyzed if short seg-
ments can be used to obtain consistent human judgments for the en-
tire video. We compared the standard deviation of average ratings of
the three segments of a single video lecture (i.e., intra-speaker vari-
ability) to the standard deviation of the average ratings in three ran-
domly selected segments from different speakers (i.e., inter-speaker
variability). According to population mean z-test, the mean inter-
speaker variability is significantly higher than the mean intra-speaker
variability (p-value < 1e−20) and thereby confirming that short au-
dio segments can be used for annotation and also for predicting the
speaking style characteristics of the speakers. This is consistent with
the thin-slicing notion [21].
Metric: We evaluate our approach on three different metrics: Pear-
son’s correlation coefficient [22], mean squared error and infor-
mation retrieval metric, normalized discounted cumulative gain
(NDCG) [23]. Evaluation is performed using (a) leave-one-speaker-
out cross validation and (b) a separate test set.

The use of NDCG as a metric stems from the application: Given
the set of relevant videos from a topic of interest (in our setting, a
chapter from a textbook), the goal is to retrieve top p re-ranked sub-
set in accordance with preference for a particular dimension (e.g.,
lively videos) elicited by the user. Therefore, we would like to cap-
ture the relevance of the video based on its position in the re-ranked
list such that the relevance in the higher ranks are valued more than
those with lower ranks:

NDCGp =
DCGp

IDCGp
=

∑p
i=1

2reli−1
log2(i+1)

IDCGp
, (2)

DCG is the gain associated to a ranking, which penalizes the
relevant samples appearing in lower ranks with the log term; reli
is the relevance of retrieved result at position i in the ranking. For
instance, to retrieve lively (or fast) speakers, the relevance of sam-
ples with liveliness (or speaking rate) score in [0, 2) is set to 0 and
the relevance of samples with liveliness (or speaking rate) in [2, 4]
is set to 1. Likewise, the samples with scores in [0, 2] and [1, 3] are
defined relevant for retrieving low-range and mid-range of the di-
mensions, respectively. IDCGp is the ideal DCGp and is obtained
by optimal ordering of the videos based on the ground truth ratings.
Thus, NDCGp varies between 0 to 1 with 1 being most consistent
with ground truth judgments across all p retrieved videos.

4.2. Results
Table 3 reports the regression results in terms of Pearson’s correla-
tion coefficient (ρ) and mean square error (MSE) between ground
truth ratings and predicted ratings. We observe a reasonable corre-
lation between the ground truth and the prediction showcasing the
efficacy of our approach. Figure 3 show the NDCG evaluations on
the test set for retrieving up to the top 10 videos. Since judgments
for the test set were obtained at the video-level, we set the predicted
value to be the median of the predictions for the multiple segments
corresponding to the video. As shown, our approach has high NDCG
for retrieving videos with average speaking rate or liveliness. We see

0 5 10

0.4

0.6

0.8

1

p

N
D

C
G

p

lively
average
dull

(a) Liveliness

0 5 10

0.4

0.6

0.8

1

p

N
D

C
G

p

fast
average
slow

(b) Speaking rate

Fig. 3. Test set evaluation: NDCG values by varying p. NDCG
computed for retrieving only up to k videos when the algorithm
found only k ≤ p videos satisfying the query.

a drop in performance for retrieving the dull and slow videos due to
a smaller number of samples in this category for our data. In the
training dataset only 25% and 39% of the samples are relevant for
retrieving dull and slow videos, respectively. In the test set this ratio
is 30% for both dimensions. Overall, the experiments show good
separation of the different descriptors within each dimension.

4.3. Feature Analysis
The LASSO regression penalizes the absolute value of the regres-
sion coefficients and shrinks a subset of them to zero to yield a sparse
model (Eq. 1). Thus, it can provide insights for feature selection. Ta-
ble 2 reports the selection percentage across cross-validation folds.
The features selected in more than 90% of time are highlighted in
bold for each task. These features are used to build the test models.
The features which yielded coefficients with consistent sign across
folds are also identified with the corresponding sign.

speaking rate: The table indicates that speaking rate is posi-
tively correlated with Jong and Wamp’s estimation of speaking and
articulation rates [15], number of F0 segments and total signal en-
ergy captured by zeroth intensity DCT coefficient.

liveliness: The selected features relevant for liveliness capturing
the dynamic range include mean peak to mean valley distance in F0
contour, F0 interquartile distances, standard deviation of F0 peaks
and max valley to peak jump in intensity contour. Likewise, liveli-
ness is positively correlated with spectral roll-off features capturing
the vocal effort. According to this analysis, lively voices have higher
F0 rising time ratio compared to dull voices. Figure 1 also depicts
this effect. Interestingly, from estimations of speaking/articulation
rates [15] only articulation rate is always selected for liveliness. This
indicates that the subjects have ignored the pauses to rate the liveli-
ness, which is expected.

5. CONCLUSION AND FUTURE DIRECTIONS

Automatic estimation of speaking style can allow students to select
preferred online videos for lesson augmentation. Using crowd sourc-
ing, we identified six broad style dimensions (liveliness, speaking
rate, pleasantness, clarity, formality and confidence) that users per-
ceive. We proposed techniques for automatically detecting liveli-
ness and speaking rate, and found these to be correlated with general
pleasantness of the voice. We showed the benefit of the approach
in a re-ranking experiment in which users selected among multiple
videos with similar content, based on their preferred speaking style.
Automatic estimation of speaking styles could also help teachers or
speakers improve their presentation skills. Future directions include
exploring additional dimensions of speaking style, understanding the
relationship between features and higher order percepts, and extend-
ing the work to include visual and other information in the video.
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