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ABSTRACT

Non-verbal speech cues play an important role in human
communication such as expressing emotional states or main-
taining the conversational flow. In this paper we investi-
gate the effect of applying deep bidirectional Long Short-
Term Memory (BLSTM) recurrent neural networks to the
Interspeech 2013 Computational Paralinguistics Social Sig-
nals Sub-Challenge dataset requiring frame-wise, speaker-
independent detection and classification of laughter and filler
vocalizations in speech. BLSTM networks tend to prevail
over conventional neural network architectures whenever the
recognition or regression task relies on an intelligent exploita-
tion of temporal context information. We introduce deep
BLSTM models by stacking several BLSTMs and by com-
bining non-recurrent deep neural networks with BLSTMs.
We demonstrate that this new approach achieves significant
improvements over previous attempts and we increase the
current state-of-the-art unweighted average area-under-the-
curve (UAAUC) value of 92.4% to 94.0%. This is the best
result on this task reported in the literature so far.

Index Terms— Long Short-Term Memory, recurrent neu-
ral networks, deep BLSTM, social signal classification, par-
alinguistics

1. INTRODUCTION AND PRIOR WORK

Paralanguage refers to the non-verbal elements of communi-
cation, used to modify meaning and convey emotion, and the
paralinguistic properties of speech play an important role in
human speech communication. The field of computational
paralinguistics deals with the computer-based analysis and
synthesis of such paralinguistic phenomena [1], a research
area that has become very active in recent years [2, 3].

Non-verbal vocalizations, such as laughter and fillers, are
non-linguistic cues that carry information about a speaker’s
intention or emotional state [4]. While laughter is commonly
associated with spontaneous or contrived affective expres-

sions [5], fillers such as ”ahm” or ”ah” are used to hold the
floor in conversations [6].

Several previous studies have focused on the detection of
laughter and fillers in human speech. One of the earliest at-
tempts was described by Kennedy and Hauptmann [7] who
trained Hidden Markov Models (HMMs) to recognize non-
word sounds in television broadcasts dedicating a small num-
ber of HMM parameters to these sound events. Schuller et
al. [8] investigated different strategies for the discrimination
between four types of non-verbal vocalisations – laughter,
breathing, hesitation, and consent – using HMMs, Support
Vector Machines (SVMs), and Hidden Conditional Random
Fields (HCRFs), using a broad selection of diverse acous-
tic Low-Level-Descriptors (LLDs) and statistical functionals.
They found that HMMs outperformed other classifiers.

Wagner et al. [9] instead applied a SVM classifier to pho-
netic patterns extracted from raw speech transcriptions, using
a sliding-window scheme computing histograms of phoneme
occurrences including some temporal context. Janicki [10]
also resorted to a SVM classifier, but on a mixed set of dif-
ferential and absolute log-likelihood scores of a GMM model
with a high number of Gaussians and a relatively long context
window. Gupta et al. [11] in turn used linear low-pass filtering
and masking techniques followed by a stacked generalization
framework in order to smooth the fluctuant posterior time tra-
jectories of their approach. As we will show, in contrast we
exploit the non-linear characteristics of recurrent neural net-
works.

Motivated by the impressive success of deep neural net-
works (DNNs) in the fields of ASR and paralinguistics [12,
13] we recently applied a deep neural network (DNN) model
on the task of vocalization detection and localization [14].
Adopting a hierarchical network architecture we established
a new state-of-the-art result on the underlying task. However,
the network we used has a fixed context size which needs to
be determined a priori.

This study presents an enhancement of our previous
work [14] applying bi-directional long short-term memory
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(BLSTM) recurrent neural networks (RNN) to the task of
frame-wise vocalization detection and classification. BLSTMs
have been shown to efficiently model a self-learned amount
of feature-level context and to be highly beneficial to ASR
problems [15]. We also introduce a novel approach applying
deep BLSTMs to the field of paralinguistics research. A simi-
lar approach has only recently been investigated by Graves et
al. [16] on phoneme recognition, where it has shown excellent
results. However, their approach differs in two respects. First,
they used connectionist temporal classification augmented by
RNN transducers to obtain a segment classification (measured
by phone error rate), while our task requires frame-wise clas-
sification. Second, their deep BLSTM models are created by
stacking multiple hidden layers, where the output sequence of
one layer forms the input sequence for the next. In contrast,
we will stack multiple BLSTMs on top of each other or a
combination of a DNN and a BLSTM.

In Section 2 we outline the structure of recurrent and
LSTM neural networks. Section 3 continues with a descrip-
tion of the database and the applied feature set followed by
a description of our experiments and results in Section 4. In
Section 5 we present our conclusions and outlook for future
work.

2. RECURRENT NEURAL NETWORKS AND LSTM

2.1. Long Short-Term Memory

Given an input sequence x = (x1, ..., xT ), a standard recur-
rent neural network computes the sequences of hidden vectors
h = (h1, ..., hT ) and output vectors y = (y1, ..., yT ) by re-
cursively evaluation the following equations from time steps
t = 1 to t = T :

ht = fact(Wxhxt +Whhht−1 + bh) (1)
yt = Whyht + by (2)

where W denote the weight matrices, b the bias vectors,
and fact the activation function of the hidden layer, often cho-
sen to be the sigmoid or tanh function.

However, standard RNNs tend to suffer from the vanish-
ing gradient problem [17], thus limiting their access to long
time lags. The Long Short-Term Memory (LSTM) model [18,
19] was devised to better find and exploit long-range con-
text using special memory cells. Figure 1 illustrates a single
LSTM memory block.

A LSTM layer consists of a number of recurrently con-
nected such memory blocks. Each block contains one or more
recurrently connected memory cells and three multiplicative
units, the input, output, and forget gates, which control the
information flow inside the memory block. The surrounding
network can only interact with the memory cells via the gates.

For the experiments described in this paper we follow the
implementation presented in [16].

Fig. 1. Long Short-Term Memory Block.

2.2. Bidirectional LSTM

A shortcoming of standard RNNs is that they have access to
past but not to future context. A solution to this problem are
bidirectional RNNs [20]. Here, two separate recurrent hid-
den layers are operating on the input sequence in opposite
directions, one in forward direction, the other in backward
direction. Both hidden layers are connected to the same out-
put layer, thus providing access to long-range context in both
input directions. In BLSTMs the principle of bidirectional
networks and the LSTM idea are combined. Of course, by
resorting to bidirectional networks true on-line processing is
impossible. This may be approximated by a truncated version
of BLSTM; however, in many applications it is sufficient to
obtain an output at the end of an utterance so that both passes,
forward and backward, can be used fully during decoding.

3. DATABASE AND FEATURE SET

The experiments and results presented in this paper are based
on the SSPNet Vocalization Corpus (SVC), which was used
in the Social Signals Sub-Challenge of the Interspeech 2013
Computational Paralinguistics Challenge (ComParE) [21].
The principal task is to perform a frame-wise classification of
the recordings into three vocalization classes: laughter, filler
(vocalizations such as ”ahm”, ”eh”, ”ah”, etc.), and garbage,
comprising all other vocalizations, such as speech, but also
including silence.

The corpus was extracted from a collection of 60 phone
calls involving 120 subjects (63 female, 57 male) [22] and
contains 2 763 audio clips, each lasting for 11 seconds and
selected in such a way that it contains at least one laughter or
filler event of durations between t = 1.5 seconds and t = 9.5
seconds. Both types of vocalisation can be considered fully
spontaneous. The data were divided into speaker disjoint sub-
sets for training, development, and testing and were manu-
ally segmented into garbage (∼2.8 million frames), laughter
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(∼109 000 frames), and filler segments (∼150 000 frames).
Note that no sub-sampling can be applied to the training set
due to the nature of recurrent neural networks, which require
the full history of frame sequences.

Many current approaches to emotion recognition and par-
alinguistic analysis adopt supra-segmental or per-utterance
feature sets that often comprise thousands of features. In
contrast, the Social Signals task requires frame-wise detec-
tion and localisation and therefore only a relatively small
set of descriptors is calculated for each frame. Using Tech-
nische Universität München’s (TUM’s) open-source feature
extractor openSMILE [23] frame-wise low-level descriptors
(LLDs) and functionals were extracted every 10 ms adopting
a frame size of 25 ms. In particular, frame-wise logarith-
mic energy and Mel-frequency cepstral coefficients (MFCC)
1–12 are computed along with their first and second order
delta (∆) regression coefficients as typically used in auto-
matic speech recognition. These are augmented by voicing
probability, HNR, F0 and zero-crossing rate, as well as their
respective first order ∆. Then, for each frame-wise LLD the
arithmetic mean and standard deviation across the frame it-
self and eight of its neighbouring frames (four before and four
after) are calculated. This results in 47× 3 = 141 descriptors
per frame. This is the standard feature set also used in the
Challenge [21].

4. EXPERIMENTS AND RESULTS

As BLSTMs are reported to have better performance than
LSTMs [24, 25] we were first of all interested in how well
BLSTMs perform on the original feature set described in sec-
tion 3. As in [14] we normalized the features to have zero
mean and unit variance, where the mean and variance was
computed on the training set. We experimented with different
hidden layer sizes and had one output node per target class.
All networks consisted of one hidden layer (per input direc-
tion) and each BLSTM memory block contained one memory
cell.

The networks were trained on the training set until the
cross-entropy error (CEE) on the development set did not im-
prove for at least 10 epochs and we chose the network that
achieved the lowest CEE on the development set. Some infor-
mal tests showed that this is a reliable indicator for the final
UAAUC performance on this strongly imbalanced data set.

Table 1 shows the results for the development and the
test set. Note that the official competition evaluation mea-
sure of the ComParE 2013 Social Signals Sub-Challenge was
chosen to be the unweighted average area-under-the-curve
(UAAUC) [26]. The motivation to consider unweighted
rather than weighted AUC is that it is also meaningful for
highly unbalanced distributions of instances among classes
as given in the Social Signal Sub-Challenge.

The best result on using a hidden layer size of 50 out-
performs the best result published so far in the literature [14]

BLSTM UAAUC [%]
network topology devel test

141-30-3 96.3 91.5
141-40-3 96.6 92.1
141-50-3 97.0 93.0
141-60-3 96.3 91.8
141-80-3 96.3 91.5

Table 1. Regular BLSTM: UAAUC for different network
topologies trained and evaluated on the original feature set.

substantially (cf. Table 4), improving the UAAUC on the test
set from 92.4% to 93.0%, an 8% relative improvment.

Motivated by this success we stacked another BLSTM on
top of the first BLSTM (network topology 141-50-3), using
the output of the first network as input to the second, thereby
creating a deep BLSTM. As the output layers of our BLSTMs
are chosen to be softmax layers the outputs can be interpreted
as posterior probabilities of the target classes laughter, filler,
and garbage. Hence, the second BLSTM computes a type
of enhanced posteriors following the ideas pursued in [14] for
non-recurrent NNs, but as a recurrent NN it uses a self-learned
context to model the time trajectories of the posteriors. Ta-
ble 2 shows the results for varying hidden layer sizes. The
numbers in italics represent the first BLSTM that was trained
on the original feature set and is kept fixed, while the second
BLSTM is trained on the output of the first network.

stacked BLSTM UAAUC [%]
network topology devel test

141-50-3-10-3 96.8 93.2
141-50-3-20-3 96.9 93.4
141-50-3-30-3 96.7 93.1
141-50-3-40-3 96.6 92.9
141-50-3-50-3 96.7 93.0
141-50-20-3 96.6 91.7

Table 2. Deep BLSTM: UAAUC for different network topolo-
gies of the second layer BLSTM. The numbers in italics de-
note that the parameters of the first BLSTM are kept fixed
during the training of the second BLSTM network.

Although one might expect that the first layer BLSTM al-
ready incorporates all time context due to its recurrent nature,
the results demonstrate that adding another BLSTM on top
of the first one consistently improves the performance on the
test set. This indicates that there is still valuable informa-
tion contained in the temporal structure of the class posteriors
generated by the first network that can be exploited by the
higher-layer network. As a control experiment a first attempt
was made to train a ’regular’ deep BLSTM without the inter-
mediate output layer (of size 3), where both BLSTM layers
were trained simultaneously. For comparison we chose the
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hidden layer sizes to be the optimal ones from the previous
experiment, i. e., 50 for the first layer and 20 for the second
layer. Given the results, shown on the bottom line of Table 2,
it is evident that the deep, stacked network offers superior per-
formance over the deep, regular BLSTM. We conjecture that
the output layer of a stacked BLSTM serves as a strong reg-
ularizer, functioning as a bottleneck layer. Future research is
needed to investigate this issue more thoroughly.

What remains unclear is the fact that the UAAUC on the
development set does not increase in the same manner as the
UAAUC on the test set. We reason that one possible reason
might be that the cross-entropy error on the development set
as a stopping criterion does not take into account the data im-
balance inherent in the data set and therefore is not directly
correlated to the absolute value of the UAAUC. What is no-
table, however, is that within each experiment the UAAUC on
the development set is a good indicator for the performance
on the test set.

Following the ideas previously described we substituted
the first BLSTM with the deep network that has produced the
best results on this task so far in the literature [14], effec-
tively forming a hierarchical, deep neural network of a non-
recurrent, deep NN (DNN) and a BLSTM-RNN. The DNN
consists of two hidden layers of size 256, was pre-trained as
a stacked autoencoder [27] and subsequently fine-tuned us-
ing stochastic gradient descent. The results of the combined
DNN-BLSTM hierarchical network are given in Table 3.

effective UAAUC [%]
network topology devel test

141-256-256-3-16-3 96.7 92.2
141-256-256-3-20-3 97.2 94.0
141-256-256-3-24-3 96.8 93.0
141-256-256-3-30-3 96.9 93.3
141-256-256-3-50-3 96.7 92.5

Table 3. Deep DNN-BLSTM: UAAUC for different network
topologies of the second layer BLSTM. The numbers in italics
denote that the parameters of the DNN are kept fixed during
the training of the BLSTM network.

With this deep DNN-BLSTM network we obtain a UAAUC
of 94.0% on the test set. This constitutes the best result on
the Social Signals Sub-Challenge dataset published so far.
Interestingly, the DNN outperforms a BLSTM when used as
the first network module. It seems to capture structure of the
feature set that is not conveyed by its temporal characteristics,
but some other form of inherent information.

Table 4 summarizes the best results obtained in this study.
Moreover, it reports the baseline results from [21] and the
previously best results on this task [14], and further shows
the performance obtained with (one-directional) LSTMs as a
comparison. It is evident that by using bidirectional LSTMs
the exploitation of the future time context in each utterance

considerably boosts performance and shows the modeling
power inherent in BLSTMs.

UAAUC [%]
model architecture network topology devel test

BLSTM 141-50-3 97.0 93.0
LSTM 141-50-3 95.3 90.9

BLSTM-BLSTM 141-50-3-20-3 96.9 93.4
LSTM-LSTM 141-50-3-20-3 95.1 90.7
DNN-BLSTM 141-256-256-3-20-3 97.2 94.0
DNN-LSTM 141-256-256-3-20-3 95.2 90.3

enhanced post. [14] 141-256-256-3 97.3 92.4
regular post. [14] 141-256-256-3 93.7 89.2

baseline [21] — 87.6 83.3

Table 4. Comparison of single and combined, deep BLSTM
models with the Social Signals Sub-Challenge and current
state-of-the-art results.

5. CONCLUSIONS AND OUTLOOK

We have proposed a novel approach to the classification
and localization of non-verbal vocalizations exploiting the
context-sensitive characteristics of bidirectional Long Short-
Term Memory models as well as the idea of combining
BLSTM networks with other BLSTMs or with non-recurrent,
deep neural network models, thereby forming deep BLSTM
models. The results presented in this paper demonstrate that
single BLSTM models already succeed in providing state-of-
the-art performance, but that this combination to form deeper
recurrent networks yield even further improvements. Deep
BLSTM models are able to increase the unweighted average
area-under-the-curve, the official ComParE 2013 Social Sig-
nal Sub-Challenge measure, from 92.4% to 94.0% on the test
set. This represents the best results published so far in the
literature.

Future research should focus on the imbalance problem
caused by the skewed dataset as well as using the UAAUC
directly as a training criterion. We also intend to investigate
the effect of feature selection more deeply, which might lead
to better generalization performance. Furthermore, we plan to
perform more in-depth experiments on deep (B)LSTMs and
combinations of (non-recursive) deep neural networks with
BLSTMs.
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