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ABSTRACT

This study addresses a situation in practice where training and test
samples come from different corpora – here in acoustic emotion
recognition. In this situation, a model is trained on one database while
tested on another disjoint one. The typical inherent mismatch between
the corpora and by that between test and training set usually leads to
significant performance degradation. To cope with this problem when
no training data from the target domain exists, we propose a ‘shared-
hidden-layer autoencoder’ (SHLA) approach for learning common
feature representations shared across the training and test set in order
to reduce the discrepancy in them. To exemplify effectiveness of our
approach, we select the Interspeech Emotion Challenge’s FAU Aibo
Emotion Corpus as test database and two other publicly available
databases as training set for extensive evaluation. The experimental
results show that our SHLA method significantly improves over the
baseline performance and outperforms today’s state-of-the-art domain
adaptation methods.

Index Terms— Transfer Learning, Cross-Corpus, Shared-
Hidden-Layer Autoencoder, Emotion Recognition

1. INTRODUCTION

Representation learning, i. e., learning transformations of the data that
make it easier to extract useful information when building classifiers
or other predictors, is recently gathering a lot of attention [1, 2]. In
this paper, we propose a ‘shared-hidden-layer autoencoder’ (SHLA)
method which can learn common feature representations shared
across training and test set in order to reduce the discrepancy in
them. Our basic idea is to feed training and test examples in the
SHLA, and then minimize the reconstruction error on the training
examples as well as on the test examples at the same time, such that
the SHLA captures a common structure of the data-generating distri-
bution induced by the training and test examples in an unsupervised
way. Afterwards, we use features learned from the SHLA to carry
out normal supervised algorithms for classification.

We will exemplify SHLA’s efficiency by application to automatic
emotion recognition in speech. Over the last decade, research in this
application field has increasingly drawn attention [3–6]. Most of
these works present promising performance based on training and
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test set coming from the same session or corpus. However, such
results may not be obtained if training and test data have different
characteristics. The mismatch between training and testing can be
due to different speakers, different acoustic conditions, and/or type of
emotion such as acted, elicited, or naturalistic [7]. It may even be that
the spoken languages or the emotion annotation schemes are different.
These differences are known to produce a detrimental effect on the
real-world performance of acoustic emotion recognition systems,
since in training they will not have prepared for data subsequently
encountered in use.

The influence of such differences can be partly alleviated by
building a feature representation that incorporates domain knowl-
edge into the data [8, 9]. However, such feature engineering can
be very application-specific and labor-intensive. Therefore, directly
learning the underlying explanatory factors hidden in the corpora
seems more promising, and more importantly is able to expand the
scope of applicability to novel target tasks. The few previous works
in this specific application field include [10] where feature transfer
learning was proposed based on a sparse autoencoder method for
discovering knowledge in acoustic features from small target data to
improve performance of speech emotion recognition when applying
the knowledge to source data.

2. RELATED WORK

Transfer learning has been proposed to deal with the problem of
how to reuse the knowledge learned previously from ‘other’ data or
features [11]. Among the various ways of transfer learning, domain
adaptation of statistical classifiers has been shown to be well suited for
a problem where the data distribution in the test domain is different
from the one in the training domain. One general approach to address
the domain adaptation problem is to assign more weight to those
training examples that are most similar to the test data, and less
weight to those that poorly reflect the distribution of the target (test)
data. This idea of weighting the input data based on the test data is
known as importance weighting. The goal is to estimate importance
weights, denoted β, from training examples and test examples by
taking the ratio of their densities β(x) = pte(x)/ptr(x) where pte(x)
and ptr(x) are test and training input densities. Kanamori et al.
proposed unconstrained least-squares importance fitting (uLSIF) to
estimate the importance weights by a linear model [12]. Tsuboi et al.
modeled the importance function by a linear (or kernel) model, which
resulted in a convex optimization problem with a sparse solution,
called KLIEP [13].

Kernel mean matching (KMM) has recently be shown to lead
to significant improvement in acoustic emotion recognition when
Hassan et al. first considered to explicitly compensate for acoustic
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and speaker differences between training and test databases [14].
KMM was proposed to deal with sampling bias in various learning
problems [15], which allows to directly estimate the resampling
weights by matching training and test distribution feature means in a
reproducing kernel Hilbert space. The objective function is given by
the discrepancy term between the two empirical means
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where the upper limit of importance weight B > 0 and ε > 0 are
tuning parameters, and k is the kernel function. Since KMM opti-
mization is formulated as a convex quadratic programming problem,
it leads to a unique global solution.

3. PROPOSED METHODOLOGY

3.1. Basic Autoencoder

A basic autoencoder – a kind of neural network typically consisting
of only one hidden layer –, sets the target values to be equal to the
input. Deep neural networks use it, as an element, to find common
data representation from the input [16, 17]. Formally, in response to
an input example x ∈ Rn, the hidden representation h(x) ∈ Rm is

h(x) = f(W1x+ b1), (3)

where f(z) is a non-linear activation function, typically a logistic
sigmoid function f(z) = 1/(1+exp(−z)) applied component-wise,
W1 ∈ Rm×n is a weight matrix, and b1 ∈ Rm is a bias vector.

The network output maps the hidden representation h back to a
reconstruction x̃ ∈ Rn:

x̃ = f(W2h(x) + b2), (4)

where W2 ∈ Rn×m is a weight matrix, and b2 ∈ Rn is a bias vector.
Given an input set of examples X , autoencoder training consists

in finding parameters θ = {W1,W2, b1, b2} that minimize the re-
construction error, which corresponds to minimizing the following
objective function:

J (θ) =
∑
x∈X

‖x− x̃‖2 . (5)

The minimization is usually realized by stochastic gradient descent
as in the training of neural networks. In this paper, we also add a
weight-decay regularization term into the objective function which
favors small weights. Note that, if the number of hidden units m is
less than the number of input units n, then the network is forced to
learn a compressed representation of the input.

...

...

... ...

Input layer

Hidden layer

{x : x ∈ Xtr ∪ Xte}

{x̃ : x̃ ∈ X̃tr} {x̃ : x̃ ∈ X̃te}

Fig. 1: Structure of the shared-hidden-layer autoencoder (SHLA) on
the training set X tr and test set X te. The SHLA shares same param-
eters for the mapping from the input layer to the hidden layer, but
uses independent parameters for the corresponding reconstructions
X̃tr and X̃te.

3.2. Shared-hidden-layer Autoencoder (SHLA)

The idea behind transfer learning is to exploit commonalities between
different learning tasks in order to share statistical strength, and
transfer knowledge across tasks [1, 18, 19]. Based on the motivation
of the ‘sharing idea’ in transfer learning, we propose an alternative
structure of autoencoder that attempts to minimize the reconstruction
error on both training set and test set. The ‘shared-hidden-layer
autoencoder’ (SHLA for short) shares the same parameters for the
mapping from the input layer to the hidden layer, but uses independent
parameters for the reconstruction process. The structure of the SHLA
is shown in Figure 1.

Given a training set of examples X tr, and a test set of examples
X te, the two objective functions, similar to Eq. (5), are formed as
follows:

Jtr(θtr) =
∑
x∈X tr

‖x− x̃‖2 , (6)

Jte(θte) =
∑
x∈X te

‖x− x̃‖2 , (7)

where the parameters θtr = {W1,W
tr
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b1, b
te
2} share the same parameters {W1, b1}.
Besides, we optimize the joined distance for the two sets, which

leads to the following overall objective function:

JSA(θSA) = Jtr(θtr) + γJte(θte) (8)
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tr
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optimized during training, the hyper-parameter γ controls the strength
of the regularization. Training the SHLA is equivalent to training a
basic autoencoder, and the standard back-propagation algorithm can
be applied.

By adding the regularization term from the target (test) set, the
SHLA is equipped with extensive flexibilities to directly incorporate
the knowledge from the target (test) set. Hence, to minimize the
objective function, the shared hidden layer is biased to make the
distribution induced by the training set as similar as possible to the
distribution induced by the target set. This helps to regularize the
functional behavior of the autoencoder. It further turns out to lessen
the effects of the difference in training and target set.
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Table 1: Number of instances for the two-class task of the FAU AEC.

# Negative Positive
∑

Train 3 358 6 601 9 959
Test 2 465 5 792 8 257

3.3. Recognition with SHLA-based Representation Learning

It has been observed widely that autoencoders can automatically cap-
ture useful features hidden in data. Such features are often used in
building a deep hierarchy of features, within the contexts of super-
vised, semi-supervised, or unsupervised modeling [17, 20, 21]. In
this work, we use the representation learned from the hidden layer
in the trained SHLA (see Eq. (3)), which will be taken to build a
standard supervised classifier for acoustic emotion recognition in the
following.

4. EXPERIMENTS

Let us now investigate the efficacy of the proposed SHLA on a stan-
dard Machine Learning task. This example stems from the field
of (cross-corpus) acoustic emotion recognition. Most previous ap-
proaches do not consider the difference between corpora before build-
ing emotion recognition models, and have demonstrated the difficulty
in cross-corpus processing [7, 22, 23]. Recently, [10] uses sparse
autoencoders to transfer useful knowledge from other corpora to the
target one using the labels of the target set. [14] considers impor-
tant weights to shift the separating hyperplane of Support Vector
Machines (SVMs) in such a way as to take into consideration the
more important training data, but without considering a cross-corpus
scenario. In the following, we provide experimental results for a
challenging real-life task by using other disjoint corpora as training
set based on the proposed SHLA representation learning.

4.1. Selected Task and Data

To investigate the performance of the proposed method, we con-
sider the INTERSPEECH 2009 Emotion Challenge (EC) two-class
task [24]. It is based on the spontaneous FAU Aibo Emotion Corpus
(FAU AEC), which contains recordings of 51 children at the age of
10–13 years interacting with the pet robot Aibo in German speech.
The children were made believe that the Aibo was responding to their
commands, whereas the robot was actually remote-controlled in a
Wizard-of-Oz manner and did not respond to their commands. Hence,
the database contains induced emotionally-colored speech. The de-
tails of the two-class task are given in Table 1. For the experiments to
follow, we always evaluate the emotion recognition model on the test
set of the FAU AEC.

Additionally, for the training set we chose two publicly available
and popular databases, namely the Airplane Behavior Corpus (ABC)
[25], and the Speech Under Simulated and Actual Stress (SUSAS) set
[26]. These are highly different from the target set FAU AEC in terms
of speaker age (adults vs. children), partially spoken language, type
of emotion, degree of spontaneity, phrase length, type of recording
situation, and annotators and subjects. For comparability with FAU
AEC, we have to map the diverse emotion classes onto the valence
axis in the dimensional emotion model. The mapping defined for the
cross-corpus experiments is used to generate labels for binary valence
from the emotion categories in order to generate a unified set of labels.
This mapping is given in Table 2. In addition, Table 3 summarizes the
three chosen databases and shows the existing differences in them.

Table 2: Emotion categories mapping onto negative and positive
valence classes for the three chosen databases.

Corpus Negative Positive
FAU AEC angry, emphatic, repri-

manding, touchy
joyful, motherese, neu-
tral, rest

ABC aggressive, intoxicated,
nervous, tired

cheerful, neutral, rest

SUSAS high stress, screaming,
fear

medium stress, neutral

Table 4: Overview of the standard feature set provided by the IN-
TERSPEECH 2009 EC.

LLDs (16× 2) Functionals (12)
(∆) ZCR mean
(∆) RMS Energy standard deviation
(∆) F0 kurtosis, skewness
(∆) HNR extremes: value, rel, position, range
(∆) MFCC 1–12 linear regression: offset, slope, MSE

4.2. Acoustic Features

To keep in line with the INTERSPEECH 2009 EC [24], we decided
to use its standard feature set of 12 functionals applied to 2 × 16
acoustic Low-Level Descriptors (LLDs) including their first order
delta regression coefficients as shown in Table 4. In detail, the 16
LLDs are zero-crossing-rate (ZCR) from the time signal, root mean
square (RMS) frame energy, pitch frequency (normalized to 500 Hz),
harmonics-to-noise ratio (HNR) by autocorrelation function, and
Mel-frequency cepstral coefficient (MFCC) 1–12. Then, 12 function-
als — mean, standard deviation, kurtosis, skewness, minimum and
maximum value, relative position, and ranges as well as two linear
regression coefficients with their mean square error (MSE) — are
applied on the chunk level. Thus, the total feature vector per chunk
contains 16× 2× 12 = 384 attributes. To ensure reproducibility as
well, the open source toolkit openEAR toolkit [27] was used with the
pre-defined EC configuration.

4.3. Experimental Setup and Evaluation Metrics

As classifier, we use linear SVMs as were used in the baseline of
the EC with a fixed penalty factor C = 0.5 as the basic supervised
learner. The toolkit LIBLINEAR [28] is applied in the experiments.

In the SHLA learning process, the number of hidden units m
was fixed to 200, and attempted hyper-parameter γ and weight
decay values λ were the following : γ ∈ {0.1, 0.3, 0.5, 1, 2, 3},
λ ∈ {0.0001, 0.001, 0.01, 0.1}.

We evaluate the performance of the baselines and SHLA systems
using unweighted average recall (UAR) as was the competition mea-
sure in the EC. It equals the sum of the recalls per class divided by the
number of classes, and better reflects overall accuracy in the presence
of class imbalance. Besides, we validate statistical significance of the
results according to a one-sided z-test.

4.4. Models for Comparison

We compare the following methods:
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Table 3: Summary of the three chosen databases.

Corpus Age Language Speech Emotion # Valence # All h:mm #m #f Rec Rate
- + kHz

FAU AEC children German variable natural 5 823 12 393 18 216 9:20 21 30 normal 16
ABC adults German fixed acted 213 217 430 1:15 4 4 studio 16
SUSAS adults English fixed natural 1 616 1 977 3 593 1:01 4 3 noisy 8
Age (adults or children). Number of utterances per binary valence (# Valence, Negative (-), Positive (+)), and overall number of utterances (#
All). Total audio time. Number of female (#f) and male (#m) subjects. Recording conditions (studio/normal/noisy). Sampling Rate.

Table 5: Cross-corpus average UAR over ten trials for the training
sets ABC and SUSAS.

UAR [%] MT CT KMM DAE SHLA
ABC 58.32 55.28 62.52 56.20 63.36
SUSAS 62.41 57.32 60.41 62.08 62.72

• Matched Training (MT): randomly (repeated ten times)
picks a number of instances from the FAU AEC training set
to train a SVM, i. e., without the need of transferring in intra-
corpus scenario. For comparison, this number is given by the
number of learning instances as in the ABC or SUSAS sets,
respectively.

• Cross Training (CT): uses ABC or SUSAS to train the stan-
dard (SVM) classifier, i. e., without using SHLA-based repre-
sentation learning.

• KMM: utilizes the KMM (see Section 2) on the ABC and
SUSAS database for covariate shift adaptation. We choose the
‘tuning parameters’ in KMM following [14, 15].

• DAE: employs denoising autoencoders for representation
learning in order to match training examples to test exam-
ples, which was successfully applied to the transfer learning
challenge and domain adaptation [18, 29].

• SHLA: uses the proposed SHLA to extract common features
on the training and target test set, then trains standard SVMs
using the learned features and labels in the training set.

4.5. Results

First we evaluate the cross-corpus scenario, where we train acoustic
emotion recognition models on ABC or SUSAS while testing on
the FAU AEC test set (except the MT condition that uses FAU data
for training). We run the experiments ten times for MT, DAE, and
SHLA methods that involve random sampling. The averaged UAR
over the ten trials is visualized in Figure 2, including the error bar,
and given quantitatively in Table 5. As can been seen, the SHLA
method outperforms all the other approaches.

More specifically, for the small database ABC, one can easily
see that the two standard methods (CT and MT) only obtain average
UAR around the chance level (55.28 % and 58.32 %). When the
accuracy obtained by the DAE method reaches 56.20 %, the covariate
shift adaptation KMM can boost the accuracy to 62.52 %. However,
with SHLA one reaches 63.36 %. This improvement has a statistical
significance at the 0.001 level compared with the baselines CT and
MT.

In comparison with ABC, although SUSAS’s average UAR from
the CT method is still close to chance level, it is worth noting that
the average UAR achieved by the MT method increases sharply

ABC SUSAS
50

55

60

65

70

U
A

R
[%

]

MT CT KMM
DAE SHLA

Fig. 2: Cross-corpus average UAR over ten trials using matched
training (MT), cross training (CT), the covariate shift adaptation
KMM, and the proposed SHLA for ABC and SUSAS.

to 62.41 % because of the larger size of SUSAS leading to more
instances chosen from the FAU AEC training set. But SUSAS cannot
obtain a great benefit from the covariate shift adaptation KMM, like
ABC. Nevertheless, the SHLA method still gives an average UAR
of 62.72 %, which is slightly larger than the maximum average UAR
obtained by the MT. Compared with the four methods in use, the
proposed SHLA method passes the significant test at the 0.01 and
0.02 level against the CT and KMM methods.

Finally, we consider the intra-corpus scenario, which means
that we conduct the representation learning between the FAU AEC
training set and its test set by the SHLA method. In this case, the
SHLA obtains an average UAR of 68.29% compared to the baseline
(the standard SVM) UAR of 67.04%. The improvement is significant
at the 0.05 level.

Overall, SHLA-based representation learning could be shown as
useful in reducing the difference for cross-corpus recognition.

5. CONCLUSIONS AND OUTLOOK

We proposed a ‘shared-hidden-layer autoencoder’ (SHLA) for repre-
sentation learning shared across training and target corpora. In this
method, we use the SHLA to explore the common feature represen-
tation in order to compensate for the differences in corpora caused
by language, speaker, acoustic conditions. Such learned representa-
tions were successfully applied to a standard machine learning task:
acoustic emotion recognition. Experimental results on three publicly
available corpora demonstrate that the proposed method effectively
and significantly enhances the emotion classification accuracy and
competes well with other domain adaptation methods. In future work,
we plan to build a deep architecture based on SHLAs and modify the
SHLA method for on-line applications.
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