
TOWARDS A SPECTRAL CHARACTERIZATION OF SIGNALS SUPPORTED ON
SMALL-WORLD NETWORKS

Michael G. Rabbat

Dept. Electrical and Computer Engineering
McGill University, Montréal, Canada
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ABSTRACT

We study properties of the family of small-world random graphs in-
troduced in Watts & Strogatz (1998), focusing on the spectrum of
the normalized graph Laplacian. This spectrum influences the ex-
tent to which a signal supported on the vertices of the graph can be
simultaneously localized on the graph and in the spectral domain
(the surrogate of the frequency domain for signals supported on a
graph). This characterization has implications for inferring or inter-
polating functions supported on such graphs when observations are
only available at a subset of nodes.

1. INTRODUCTION

There is a growing body of work concerned with inferring, filtering,
compressing, and otherwise studying signals that are supported on
graphs [1]. There are a variety of applications where the data nat-
urally is supported on the vertices of a graph, including social net-
works, transportation networks, and telecommunication networks.
In other applications involving high-dimensional data, the data may
naturally lie on a low-dimensional manifold in which case it is com-
mon to impose a graph structure over the data as a means of estimat-
ing or approximating the structure of the manifold.

The uncertainty principle is a fundamental tenet of signal
processing [2]. The classical uncertainty principle states that a
continuous-time signal cannot be simultaneously localized in both
the time domain and the frequency domain. Agaskar and Lu [3, 4]
have recently initiated the study of uncertainty principles for signal
supported on graphs. A signal x on a graph G = (V,E) is a vector
with one component x(v) ∈ R at each vertex v ∈ V of the graph;
typically when studying signal on graphs one expects that the values
x(u) and x(v) at two vertices u and v should somehow related (e.g.,
have similar values) if there is an edge (u, v) ∈ E connecting them
in G (i.e., if u and v are neighbours). Agaskar and Lu [4] define
notions of the graph-domain spread ∆2

g(x) and the spectral-domain
spread ∆2

s(x) of a signal x which both are related to the connectiv-
ity of the graph G. The graph spread quantifies the extent to which
a signal is spread over the graph as a function of the distance from
each node to an appropriately chosen (signal-specific) center vertex.
The spectral spread quantifies the extent to which a signal is spread
in the spectral domain, where the spectral domain is defined in terms
of the eigendecomposition of the graph Laplacian.1 Based on these
notions, one can begin to study the extent to which a signal can be
simultaneously localized in both the graph and spectral domains, as
a function of the graph topology.

1Precise definitions are given in Section 3.

In the present paper we study spectral properties of small-world
networks. Small-world networks [5] are networks which simulta-
neously are highly clustered (i.e., the graph contains many trian-
gles) and have short average path length (the number of hops on the
shortest path connecting a randomly drawn pair of vertices). Net-
works with the small-world property have been observed in a vari-
ety of applications, including social networks, biological networks,
and telecommunication networks. Watts and Strogatz [5] propose
a model for generating small-world networks. Their model begins
with a K-connected ring (which is highly clustered, but has long
path lengths) and randomly rewires each edge with probability p.
The random rewiring reduces the clustering but also dramatically
reduces the average path length. Watts and Strogatz [5] observe
that for relatively small values of p, the resulting random graphs
remain highly clustered while simultaneously having small average
path length.

Previously, we reported on a set of experiments looking at the
uncertainty curve of small-world networks [6]. The uncertainty
curve γ(s) is the smallest graph spread ∆2

g(x) achievable by a
signal x with spectral spread ∆2

s(x) = s. Figure 1 depicts the
expected uncertainty curve γ(s) for different instances of small
world networks with rewiring probability ranging from p = 0 to
p = 1. When p ≈ 0, the uncertainty curve is very similar to that of
a K-connected ring, and when p ≈ 1, the uncertainty curve is very
similar to that of an Erdős-Rényi random graph, where all edges are
independent. Interestingly, we observe a sharp transition where, for
intermediate values of p, the uncertainty curve undergoes a rapid
shift between these two regimes. This shift occurs around values of
p where the clustering drops rapidly, and the location of the shift
is also well-correlated with the second smallest eigenvalue of the
graph Laplacian rapidly increasing [6]. These observations motivate
us to further investigate the dependency of the uncertainty curve
on the Laplacian spectrum and to study the Laplacian spectrum of
small-world networks.

The contributions of this article are as follows. First we show
that when the spectral spread is equal to zero, the graph spread can-
not be made smaller than 1/2. Combined with previous results (that
the spectral spread is exactly equal to 1 when the spectral spread
is 0), this implies that the lower uncertainty curve always remains
bounded away from zero at its extremities. Then, towards charac-
terizing the lower uncertainty curve of small-world networks, we
study spectral properties of the Laplacian matrix of this family of
networks.
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Fig. 1. Lower uncertainty curve of small-world networks for vary-
ing values of p from 0 to 1. We observe that the uncertainty curve
undergoes a sharp transition between being close to that of a K-
connected ring (p ≈ 0) to being close to that of an Erdős-Rényi
random graph [6]. The curves are generated via simulation for net-
works with n = 1024 vertices, with p ranging from 0.001 to 1 on a
logarithmic scale.

2. SIGNALS ON GRAPHS

This section begins by introducing concepts and notation that will be
used throughout the paper. Let G = (V,E) be a graph with vertex
set V and edge set E ⊆ V × V . In this paper we restrict our atten-
tion to graphs which are simple, undirected, and unweighted.2 For a
graph with n = |V | vertices, we index the vertices using the integers
modulo n; i.e., V = Z/nZ = {0, 1, . . . , n− 1}. Consequently, the
adjacency matrix A of the graph is symmetric and binary-valued,
with Au,v = Av,u = 1 if and only if (u, v) ∈ E. The adjacency
matrix exactly captures the structure of the graph, in the sense that
there is a bijection betweenG and A. The degree of a vertex v ∈ V ,
denoted by deg(v), is the number of neighbours of v inG, where the
neighbours of a vertex v are those vertices u for which (u, v) ∈ E.
Let 1 denote the n × 1 vector with all entries equal to 1, and for a
vector x ∈ Rn, let x(v) = [x]v denote the vth entry of x. Then the
degree of v is equal to deg(v) = [A1]v .

The normalized graph Laplacian is another fundamental matrix
which captures properties of the graph G. Understanding properties
of a graph through the study of the Laplacian matrix is the central
aim of spectral graph theory, and we next recount basic facts from
spectral graph theory following [7]. Let D = diag(A1) denote a
diagonal matrix whose vth entry is equal to the degree of vertex v.
Then the normalized graph Laplacian is the n× n matrix

L
def
= I −D−1/2AD−1/2 ,

where I denotes the identity matrix. The normalized Laplacian, and
its spectrum in particular, captures many properties related to the
structure of the graph [7]. Since A is symmetric and D is diagonal,
L is also symmetric and so it has an eigenvalue decomposition,

L = FΛF T ,

2A simple graph has no self-loops (i.e., all edges are between two distinct
vertices) and no multiple edges (i.e., there is at most one edge between any
pair of vertices).

where F is a n×n orthonormal matrix whose columns are the eigen-
vectors of L, and Λ is a diagonal matrix of real eigenvalues.

It is well known that if G is connected then L has one eigen-
value equal to zero, and all other eigenvalues are strictly positive.3

Moreover, the largest eigenvalue of L is at most 2, and it is equal to
2 if and only if G is bipartite. Throughout the following we assume
that G is connected and we denote the eigenvalues of L by

λ0 = 0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ 2 .

Let F = [f0,f1, . . . ,fn−1]; i.e., fj is the jth column of F . The
eigenvector f0 corresponding to λ0 can be taken such that all entries
are positive, in which case its values are given by

f0(v) =

√
deg(v)∑
u∈V deg(u)

.

Since F is an orthogonal matrix, it follows that all other eigenvec-
tors fj , j 6= 0, contain both positive and negative entries. In par-
ticular, it can be shown that the sign of the entries of the second
eigenvector, f1, defines a cut of the graph with interesting properties
for partitioning the graph into two sets, V1 and V2, which are each
well-connected (i.e., a vertex v ∈ V1 has many neighbours in V1)
and for which the number of edges with one end in V1 and the other
end in V2 is small [8].

The aim of our study is to understand how the structure of graphs
influences the class of signals that are “naturally” supported on the
graph. A signal on a graph is a mapping from the vertices V to the
reals R. As such, a signal x on a graph can be considered a vector
in Rn. The Laplacian is of interest when studying signals defined
on a graph. Consider a sequence of signals {xt} indexed by t ≥ 0.
Given an initial condition x0, the solution to the heat equation on G
is the sequence for continuous time t > 0 that satisfies

∂

∂t
xt = −αLxt , (1)

where the positive constant α represents the thermal diffusivity.
Equivalently, in discrete time, we get

xt+1 = xt − αLxt . (2)

Since all eigenvalues of L are non-negative, it follows that the matrix
T = I − αL has one eigenvalue equal to 1, with corresponding
eigenvector f0, and all other eigenvalues of T are less than 1 if α ≤
1. Moreover, if G is not bipartite, then all other eigenvalues have
magnitude strictly less than 1, and so it follows that xt converges to
‖x0‖f0 as t→∞, where ‖x0‖ denotes the Euclidean norm of x0.
From this perspective, T can be viewed as a smoothing or low-pass
operator, and subsequently, L can be viewed as a high-pass operator.

Given a signal x onG, the quadratic form xTLx also has an in-
teresting interpretation. From the definition of L, it directly follows
that

xTLx =
∑

(u,v)∈E

(
x(u)√
deg(u)

− x(v)√
deg(v)

)2

. (3)

The suggests that xTLx can be interpreted as the (degree-
normalized) disagreement between the values at neighbouring
nodes. Based on this observation, the dynamics (1) and (2) have been
used in recent years to develop efficient algorithms for consensus-
based in-network distributed processing [9, 10].

3If G is not connected then the multiplicity of the eigenvalue 0 is equal to
the number of connected components of G.
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3. UNCERTAINTY PRINCIPLES FOR SIGNALS ON
GRAPHS

Agaskar and Lu [3, 4] initiate the study of uncertainty principles
for signals supported on graphs. The classical uncertainty princi-
ple states that a continuous-time signal defined on the unit interval
cannot be simultaneously well-localized in both time and frequency.
In signal processing one often wishes to obtain a parsimonious rep-
resentation of a signal (e.g., through a linear transformation). The
uncertainty principle has had profound implications for the design
of bases which are well-localized in both time and frequency.

We follow the definitions of graph and spectral spread intro-
duced in [3, 4]. The graph spread of a signal x is defined as

∆2
g(x) = min

v∈V

1

‖x‖2
∑
u∈V

d(u, v)2x(u)2 , (4)

where d : V × V → R is any distance defined over the graph sat-
isfying d(u, v) ≥ 0, d(u, u) = 0, and d(u, v) ≥ 1 if u 6= v. The
spectral spread of a signal x is defined as

∆2
s(x) =

xTLx

xTx
. (5)

The uncertainty principle states that both graph and spectral
spreads cannot be both made arbitrarily small for the same signal
x. For example, suppose x is such that ∆2

g(x) = 0. This is only
possible if there is a vertex v with x(v) = 1, and x(u) = 0 for all
u 6= v, since d(u, v) > 0 for u 6= v. For such a signal [4], the
spectral spread is ∆2

s(x) = 1, and this can be seen directly from (3).
Now, let us also consider the other extreme, where the spectral

spread is zero. In this case we can show that:

Proposition 1. Let G be connected and let x be a signal on G such
that ∆2

s(x) = 0. Then ∆2
g(x) ≥ 1/2.

Proof. Since we assume the graph is connected, the Laplacian L
has an eigenvalue λ0 = 0 with multiplicity one, and thus spectral
spread is zero when only the first coordinate of F Tx is nonzero. As
a consequence, if ∆2

s(x) = 0 then x ∝ f0 and the graph spread is

∆2
g(x) = min

v∈V

∑
u∈V d(u, v)2 deg(u)∑

v′∈V deg(v′)
.

Since d(u, v) ≥ 1 for u 6= v,

∆2
g(x) ≥ min

v∈V

∑
u6=v deg(u)∑
v′∈V deg(v′)

,

and taking vmax ∈ argmaxu deg(u), we obtain

∆2
g(x) ≥

∑
u6=vmax

deg(u)∑
v′∈V deg(v′)

.

Note that deg(vmax) ≤ n− 1 and∑
v′∈V

deg(v′) ≤ (n− 1) +
∑

u6=vmax

deg(u) ,

and so

∆2
g(x) ≥ 1− n− 1

n− 1 +
∑
u6=vmax

deg(u)

≥ 1

2
,

where the last inequality follows from noting that deg(u) ≥ 1 be-
cause G is connected.

We note that this lower bound is achieved for the star graph [4].
Combining our Proposition 1 with the observation in [4] that

∆2
g(x) = 0 implies ∆2

s(x) = 1 illustrates that some form of an
uncertainty principle exists for signals on graphs, in the sense that
a signal with zero graph spread must have non-zero spectral spread,
and vice versa. In general, it is of interest to quantify the extent to
which a signal can be localized in the graph domain while having a
given spectral spread. Specifically, we would like to characterize the
lower uncertainty curve γ(s) defined as [4]

γ(s) = min
x : ∆2

s(x)=s
∆2
g(x) .

The spectral spread (5) is directly expressed as a Rayleigh quo-
tient in terms of the Laplacian. The graph spread (4) can also be
expressed as a Rayleigh quotient [4] by defining n×n diagonal ma-
trices P 2

v with [P 2
v ]u,u = d(u, v)2; then

∆2
g(x) = min

v∈V

xTP 2
v x

‖x‖2
.

There is a direct connection between Rayleigh quotients and the
eigenvalues of a matrix via the Courant-Fischer theorem [11]. This
motivates studying the Laplacian spectrum of small-world networks
as a step towards characterizing the lower uncertainty curve of small-
world networks.

4. LAPLACIAN SPECTRUM OF RING GRAPHS

Towards characterizing the Laplacian spectrum of small-world net-
works, in this section we discuss the Laplacian spectrum of K-
connected rings. Recall that we index the vertices using the integers
modulo n; i.e., V = {0, 1, . . . , n − 1}. For an integer K ≥ 1,
the K-connected ring on n vertices is a graph G which has an edge
between vertices u and v if and only if

u− v (modn) ≤ K .

Taking K = 1 gives the standard ring topology where each vertex v
has two neighbours, v + 1 and v − 1, with arithmetic taken modulo
n.

Observe that the adjacency matrix AK of the K-connected ring
is circulant. Also note that every vertex has exactly 2K neighbours,
so the degree matrix is DK = (2K)I . Consequently, the matrix
TK = D

−1/2
K AKD

−1/2
K is circulant with entries

[TK ]u,v =

{
1

2K
if u− v (modn) ≤ K ,

0 otherwise.

It follows from well-known properties of circulant matrices [12] that
the eigenvalues of TK are given (in no particular order) by

λj(TK) =
1

K

K∑
k=1

cos(2πjk/n) ,

for j = 0, 1, . . . , n− 1, with corresponding eigenvectors fj having
entries

fj(v) = e2πivj/n , (6)

where i =
√
−1 is the imaginary unit. Note that, for any K-

connected ring, for j ≤ dn
2
e the eigenvalues λj(TK) and λn−j(TK)

are equal, since cos(2πc/n) = cos(2π(n−c)/n) for 0 ≤ c ≤ n−1.
Since LK = I − TK , the eigenvalues of LK are simply given

by 1− λj(TK).
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5. LAPLACIAN SPECTRUM OF SMALL-WORLD
NETWORKS

Next we study the Laplacian spectrum of small-world networks. The
small-world model, introduced by Watts and Strogatz [5], defines an
ensemble of random graphs parameterized by an integer K ≥ 1
and a rewiring probability p ∈ [0, 1]. A realization of a small-world
random graph on n nodes with parametersK and p is obtained using
the following procedure. Begin with aK-connected ring on n nodes.
Then, for each edge (u, v) ∈ E, independently and with probability
p, rewire the edge by re-connecting one of the vertices, say u, to a
new vertex chosen uniformly from V \ {u}.

Watts and Strogatz [5] observed that many networks are both
highly clustered and have short average path lengths. They are
highly clustered in the sense that, on average over all nodes v ∈ V ,
if v1 and v2 are both neighbours of v, then v1 and v2 are also neigh-
bours in a significant proportion of cases. Networks have short av-
erage path length if, taking the average over all pairs of vertices
(v1, v2) ∈ V × V , the length of the shortest path between v1 and
v2 is significantly shorter than n; e.g., it may be of order O(logn).
Watts and Strogatz [5] proposed the model described above under the
motivation of generating random graphs which exhibit these proper-
ties.

In the small-world model, when p ≈ 0, then very few edges
are re-wired and the graph is essentially still a K-connected ring.
The K-connected ring is well-clustered, in the sense that many of
each node’s 2K neighbours will also be neighbours. However, the
average path-length is quite high (i.e., of the orderO(n/K)). On the
other hand, when p ≈ 1, then all edges are rewired and the small-
world model is similar to an Erdős-Rényi random graph [13]; that is,
one where for each pair of vertices, the edge (u, v) is present in the
graph independently and with probability p′ = 2K

n−1
. Such graphs

are known to have have short path length, but they are not highly
clustered [14]. Watts and Strogatz [5] observed that, interestingly,
for intermediate values of the rewiring probability p, the resulting
random graphs exhibit both high clustering and short average path
length.

In this section we study the spectrum of the expected Laplacian
of a small-world graph. Through experiments we have observed that
the spectrum of small-world graphs is tightly concentrated around its
expectation. Let us fix the model parameters K ≥ 1 and p ∈ [0, 1].
Let AK denote the adjacency matrix of a K-connected ring, and
let A denote the expected adjacency matrix of a small-world graph.
Since each edge is rewired with probability p, and the rewiring is
done in an independent and uniform manner, it follows that the ex-
pected adjacency matrix is given by

A = AK − pAK +
2pK

n− 1
(11T − I) .

After rewiring, the expected degree of each node is still 2K, and so
the expected degree matrix is D = (2K)I . As a surrogate for the
expected diffusion matrix, we take T = D

−1/2
AD

−1/2
which is

equal to

T = TK + p

(
1

n− 1
(11T − I)− TK

)
, (7)

where TK is the diffusion matrix of the K-connected ring.
We will obtain approximate expressions for the eigenvalues of T

by using concepts from matrix perturbation theory. To this end, we
recall some definitions and basic facts from [15]. Matrix perturba-
tion theory involves the study of eigenvalues of a matrix T (ε) which

has been perturbed from a baseline matrix T0 by a small amount
ε > 0. If T (ε) is a continuous function of ε, then the eigenvalues
of T (ε) are continuous functions of ε too [15]. An eigenvalue of
T (ε) is called stable if it does not depend on ε. An eigenvalue of
T (ε) is called semi-simple if its algebraic multiplicity is equal to its
geometric multiplicity.

Now, consider the special case where T (ε) is a linear perturba-
tion of T0; i.e., T (ε) = T0 + εE for some perturbation matrix E.
Suppose that λ0 is a semi-simple double eigenvalue of T0 with cor-
responding eigenvectors f1 and f2. Then for ε > 0, T (ε) has two
eigenvalues, λ0,1 and λ0,2, related to λ0, which can be given in the
form of a power series,

λ0,1 = λ0 + ελ′ + o(ε)

λ0,2 = λ0 + ελ′′ + o(ε),

where λ′ and λ′′ are the eigenvalues of the 2× 2 matrix[
fT1 Ef1 fT1 Ef2

fT2 Ef1 fT2 Ef2

]
.

To simplify the discussion for this short paper, we focus on
the case where n is odd. Then the diffusion matrix TK of the K-
connected ring on n nodes has exactly one eigenvalue λ0(TK) = 1,
and all other eigenvalues come in pairs

λj(TK) = λn−j(TK) =
1

K

K∑
k=1

cos(2πjk/n) ,

for j = 1, . . . , dn
2
e, and the eigenvectors are exactly those described

by (6). We will use the results from matrix perturbation theory men-
tioned above to obtain expressions for the eigenvalues of T by taking
T0 = TK , ε = p, and

E =
1

n− 1
(11T − I)− TK .

It is easy to verify that λ0(T ) = 1 is a stable eigenvalue of T
since f0 = (1/

√
n)1 is a constant vector. All remaining eigen-

values of TK have multiplicity two. For j = 1, . . . , dn
2
e, the

eigenvalue λj(TK) has eigenvectors fj and fn−j . Note, also, that
fTj 1 = fTn−j1 = 0 since the eigenvectors are orthogonal and f0 is
proportional to 1. Using these facts one can verify that

fTj Efj = fTn−jEfn−j =
1

n− 1
− λj(TK)

and
fTj Efn−j = fTn−jEfj = 0 .

Thus, for the small-world model, the eigenvalues of T are λ0(T ) =
1 and, for j = 1, . . . , dn

2
e,

λj(T ) = (1− p)λj(TK) +
p

n− 1
+ o(p),

with multiplicity two, and with the same eigenvectors fj and fn−j .

6. CONCLUSION AND FUTURE WORK

We prove a lower bound on the graph spread of signals with zero
spectral spread, and we provide an approximate characterization of
the Laplacian spectrum of small-world networks. Our future work
involves more precisely characterizing the shape of the lower uncer-
tainty curve for ring graphs, small-world networks, and more general
graphs using the results presented here.
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