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ABSTRACT
We study the simultaneous evolution of the opinion profile
and network topology of a system of N agents. Based on the
opinion profile at any given time, agents probabilistically de-
cide which other agents to form links with. The probability
of a link being formed with another agent depends on both
similarity of their opinions and the popularity of that agent.
Agents then average their opinion with the opinions of the
agents they have formed links with, giving rise to a new opin-
ion profile that determines –in a probabilistic fashion– the net-
work topology for the next time step. Thus both opinions and
network structure exhibit a strong correlation over time. De-
spite this correlation, we show that this system converges to
a consensus in opinion. We provide simulations of conver-
gence times and the limiting opinion profile as a function of
the parameters of the system.

Index Terms— Social Learning, Opinion Dynamics

1. INTRODUCTION

Individuals form beliefs on various economic, political and
social variables based on information they receive from their
local network. A growing literature studies dynamics of these
beliefs using plausible rules of thumb on how individuals
combine the beliefs of their neighbors in the network with
their own—e.g., by taking some weighted average—and a
fixed structure of the underlying social network (for example,
Golub and Jackson in [1], DeGroot’s seimnal work in [2]).
This literature provides necessary and sufficient conditions
for a consensus of opinion to emerge within a network. It is
not clear, however, whether belief dynamics can be decoupled
from the evolution of the network. For example, conformity
of opinions between different agents may affect the likelihood
that they will communicate in the future, and the popularity
of individual might increase the weight that others attach to
their opinion or whether they befriend them.

In this paper, we develop a tractable but fairly general
model of the co-evolution of the topology of a social network
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and the distribution of beliefs over the network. In our model,
agents form and sever links based on the similarity of beliefs
and the past popularity of others in the network. These two
features enable a fairly general process for the co-evolution of
the topology of the network and the belief distribution.

Both of these features have been studied in isolation
and in somewhat different contexts in the existing literature.
Hegselmann-Krause introduced a model of belief dynamics
in which agents only communicate with others in the network
who are no further than a certain distance from their opinion
[3]. This model has been subsequently studied in [4] and
[5], among others, and variants where the impact of belief
differences on communication probabilities is smooth have
been analyzed in [6]. Skyrm and Pemantle, on the other hand,
proposed a friendship model where past interactions between
agents reinforce the chance of future interactions [7]. In [8],
Fazeli and Jadbabaie studied an opinion formation process
for a special case of the Skyrm-Pemantle model where inter-
actions are governed by an urn process and a visit increases
the probability of a future repeat visit in the same agents.
Fazeli and Jadbabaie exploit the properties of the urn process
to show convergence to a consensus.

Our work differs from these existing papers in several di-
mensions. First, we combine two dimensions of the endo-
geneity of the network, allowing future communications to
depend both on differences in opinion and on the history of
past visits. Second, we allow a tractable and general formu-
lation linking these variables to communication probabilities
(e.g., as opposed to Hegselmann-Krause’s model where the
impact of belief differences on these probabilities is discon-
tinuous). As a result, compared to Fazeli and Jadbabaie, the
probability that agent i visits agent j can increase without i
having ever visited j. This may happen, for example, be-
cause j has visited another agent that holds an opinion close
to that of i and as a result j’s opinion has moved closer to
that of i, increasing the probability of their future interaction.
This is a plausible and quite realistic scenario, and one that
is not captured by the Fazeli-Jadbabaie or Skyrm-Pemantle
models. Compared to Hegselmann-Krause, communication
is not precluded between any two agents because probabili-
ties are continuous functions of belief differences and because

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4806



the likelihood of communication with an agent holding a very
different belief can be still very high if she is popular. These
differences also imply that the mathematical structure of the
evolution of the network topology and beliefs is different in
our model than in existing work. In particular, the evolution of
the network topology cannot be described by a stochastic pro-
cess with independent and identically distributed increments.
This necessitates a different mathematical approach, which
we develop in this work.

More formally, in our model at each date agents start with
a scalar belief, which they use to determine which others to
visit. After visiting another agent, an agent updates his beliefs
by simply averaging their pre-visit belief with the belief of the
agent that he visited. The model we consider relies on two pa-
rameters, β and κ, which have direct interpretations in terms
of the nature of the social network. In particular, in our model
β measures how “open” a society is to opinions that are dif-
ferent from the norm within that society, with higher values of
β indicating a more “conservative” society. In a conservative
society, agents are unlikely to visit other agents whose opin-
ions are different from their own. The second parameter, κ,
describes the tendency of a society to follow the opinions of
popular individuals. As we show, these two parameters have
a strong effect on the behavior of the system.

Because at time t+1 agents use opinions at the end of time
t to determine what connections they will form at time t+ 1,
the system is correlated across time. We show that despite this
correlation and despite the fact that parameter values that can
make it highly unlikely for agents with different opinions to
interact, the system still reaches consensus, though the time to
do so strongly varies as a function of the system parameters.
We provide simulations illustrating how the speed of conver-
gence and the consensus value, which is a random convex
combination of initial opinions, depends on the parameters of
the system.

The paper is organized as follows. Section 2 introduces
our model formally and discusses the criteria by which agents
decide to connect to other agents. Section 3 discusses differ-
ences between our model and existing consensus results and
provides our convergence theorem. Section 4 discusses how
the system parameters affect the behavior of the system.

2. MODEL

Our model consists of a society of N agents with an initial
opinion vector x(0) ∈ [0, 1]n. Society is represented by a dy-
namic graph Gt(N,Et), where N is a fixed set of nodes rep-
resenting the agents and Et is the set of edges linking these
agents at time t. The edges are formed by the agents in the
following way. Each time step, all agents place weights on
all other agents and use these weights to probabilistically se-
lect an agent to form a link with. We will refer to the link
formation process as a ’visit’. Thus in each period each agent
visits exactly one other agent and has an out-degree equal to

one. We assume that the decision of whom to visit is inde-
pendent across the agents. After each round, agents update
their opinions. Agent i’s opinion after a period where he vis-
its agent j is the average opinion of i and j, while j’s opinion
remains unaffected by the visit. The weight that agents place
on other agents has two components. The distance in opinion
component, and the popularity component.

2.1. Distance in Opinion

The first component in the weight that agent i places on agent
j at time t depends on how similar the opinions of i and j
were at the end of the previous period, t − 1, and is given
explicitly by

e−β|xi(t−1)−xj(t−1)|

where β ≥ 0 is a constant. This expression is commonly
used in the economics and physics literatures and lends itself
naturally to our formulation, since agents with similar opin-
ions put higher weights on each other. The probability with
which agent i visits agent j at time t is then given by

e−β|xi(t−1)−xj(t−1)|∑
k 6=i e

−β|xi(t−1)−xk(t−1)|

The parameter β can be agent specific, but for simplicity
we take it to be the same for all agents. This parameter can be
thought of as a quality that the society as a whole possesses.
When β is high, agents are more inclined to visit only those
agents who are similar to them in opinion, leading to a soci-
ety that is more conservative on average than a society with
lower values of β. When β is low, agents are more open to
visit other agents who are different from them in opinion and
society is more accepting of ideas that are different from the
norm.

2.2. Popularity

Another aspect that goes into the weight that agents place on
each other in our model is popularity. A popular agent at
time t is an agent who has received many visits in time t− 1.
This means that popularity is equivalent to the in-degree of an
agent, with agents with higher in-degrees being more popular.
In particular, the weight that agent i assigns to agent j at time
t based on popularity alone is equal to

eκdj(t−1)

and is increasing in dj(t − 1), the in-degree of agent j. Like
before, the probability with which agent i visits j then is given
by

eκdj(t−1)∑
k 6=i e

κdj(t−1)

.
Similar to β, κ ≥ 0 is a parameter that describes how

important popularity is to agent when they assign weights to
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other agents. Again, this parameter can be agent specific but
we take it to be the same across the society. This means that
a society with high values of κ is inclined to visit popular
agents more than a society with a lower κ.

Combining these two components, we let W (t) and P (t)
be the n × n weight and probability matrices at time t, re-
spectively. Entry wij(t) is the weight that agent i places on
agent j at time t, while entry pij(t) represents the probability
with which agent i visits agent j at time t Thus the ith row
in P (t) represents the probability vector that agent i uses to
decide whom to visit in period t. To reduce clutter, we drop
the t−1 argument with the understanding that all weights are
computed from the values obtained at the end of the previous
period. Thus P (t) is a matrix with pii(t) = 0 and

pij(t) =
wij(t)∑
k 6=i wik(t)

=
e−β|xi−xj |+κdj∑
k 6=i e

−β|xi−xk|+κdk
. (1)

At each time t, agents use P (t) to decide whom to visit. The
visits give rise to the set of edges Et and the adjacency ma-
trix A(t). Because each agent visits exactly one other agent,
the matrix A(t) has one entry equal to one in each row with
the rest of the entries in that row equal to zero. Since agents
update their opinions by taking the average of their opinion
as well as the opinion of the agent they visited, we define the
stochastic matrix Z(t) as

Z(t) =
A(t) + In

2
,

where In is the n×n Identity matrix. We use the matrix Z(t)
to describe the opinion profile at time t + 1 as a function of
the opinion profile at time t through the relationship

x(t+ 1) = Z(t)x(t), (2)

and therefore the opinion profile at time t + 1 can be written
as

Z(t)Z(t− 1)...Z(0)x(0). (3)

Let Z = {Z : Z ∈ Rn×n, Zii = 1
2 and Zij(i) = 1

2 and
Zik = 0 for k 6= i, j(i)} be the set of all such matrices.

3. CONSENSUS

In this section we study the dynamics described by Eq.
(2) and the backward product of the stochastic matrices
Z(t), ..., Z(0) in Eq. (3). We show that the system in Eq.
(2) reaches consensus despite the strong correlation exhibited
by the matrices Z(t). A general result on the stability (and
consensus) of systems like the one in Eq. (2) is given by
Lorenz in [5]. The model we consider in this paper however
violates at least one of the three conditions that Lorenz posits
on the matrices Z(t). Namely, the ’confidence is mutual’
condition which states that the matrices Z(t) should be type-
symmetric. Type-symmetric matrices require that Zji(t) > 0

whenever Zij(t) > 0, which translates in our model to insist-
ing that at time t, if agent i visits agent j then agent j must
visit agent i. This is a restrictive assumption that our model
does away with. This is not very surprising considering that
Lorenz’s conditions are sufficient but not necessary.

On the other hand, the infinite flow and absolute infinite
flow properties developed in the work of Touri and Nedić
on backward products of stochastic matrices provide neces-
sary but not sufficient conditions for the backward product of
the sequence {Z(t)}∞t=0 to converge to a consensus matrix,
i.e. checking whether our matrices fulfill these properties or
not does not automatically lead us to conclusions about con-
vergence. The characterization in [9] gives an equivalence
between the absolute infinite flow property and the conver-
gence of doubly-stochastic matrices. Since our matrices are
not doubly-stochastic, we can not make use of this equiva-
lence for our results. Finally, other convergence results start-
ing from Wolfwitz’s theorem [10], and found in the works of
Jadbabaie, Lin, and Morse [11], and Hedrickx and Blondel
[12] are based on the assumption that the matrices Z(t) are
irreducible, which is again not the case in our model.

As mentioned earlier, the closest model to ours is that of
Fazeli and Jadbabaie. The proof of convergence in their work
utilizes the fact that the model is built on top of a Polya’s
urn process, where the probability that agent i visits agent j
evolves in the same way as in the urn process.1 This enables
the authors to use the fact that the urn process has the prop-
erty that sequences are exchangeable, meaning that the order
in which the visits are made does not affect the joint proba-
bility of a sequence of visits. Our model is more complicated
because pij(t) is not just a function of pij(t − 1), but also
of who agent j visited in period t − 1, since that visit will
change xj and therefore has an effect on wij(t) and conse-
quently pij(t).

For the purpose of stating the convergence theorem, we
define a consensus matrix K as a matrix whose rows are all
equal. We can then provide our result on convergence.

Theorem 3.1 Denote by Z(0, t) the matrix resulting from the
multiplication Z(t)Z(t− 1)...Z(0) and let K be a consensus
matrix, then limt→∞ Z(0, t) = K with probability 1.

The proof of the theorem relies on a modification of the
Borell-Cantelli Lemma to apply to non-independent events,
and then adapting the proof in [5].

4. NUMERICAL RESULTS

4.1. Speed of Convergence

We simulate a system of N = 20 agents. Figure 1 shows
the speed of convergence for different values of β. When

1In this model, agent i visiting agent j increases the probability that this
visit is repeated in the next period, in the same way that choosing a red ball
from an urn and then putting back two red balls increases the probability of
picking a red ball in the next trial.
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Fig. 1. Convergence Times For Different Values of β
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Fig. 2. Convergence Times for κ = 2 and β = 20 and 30

β = 0, agents in the society have no particular inclination
to visit those who are similar to them, the system converges
exponentially fast. As β grows larger convergence becomes
slower. For β over 30, convergence was not obtained in any
reasonable amount of time; instead, society clusters into two
or three groups, with each group having a consensus amongst
themselves.

Conversely, κ gives a strong boost to the speed of conver-
gence, as society obtains most of its information from only a
small group of agents. Figure 1 is revisited in Figure 2 with
the addition of κ = 2, which shows how the previously non-
convergent case with β = 20 now converges extremely fast,
as does the case when β = 30. At these values, the popularity
component takes over and the system converges even when β
is quite high.

4.2. Limit Opinion

We simulate the process for a randomly generated opinion
vector with mean 0.351 and we start with the case β = κ = 0.
This baseline case is when agents visit each other in each pe-
riod with the same probability, thus the Z matrices are iid.
This baseline case is analyzed in [13], where the authors show
that the limiting opinion profile is a random vector with ex-
pectation equal to the expectation of the initial opinion profile,
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Fig. 3. Expectation of Limit Opinion as a Function of β

i.e. society is able to aggregate information (in this case, the
average value) correctly. This is observed in the simulations.

When we keep κ equal to zero and increase β, the re-
sulting expectation starts drifting away from the case β = 0.
Figure 3 shows the expectation of the limit opinion falling
steadily as β increases from 0 to 12. One explanation for this
lies in the structure of the randomly generated opinion profile,
which has five agents with x(0) values that are less than 0.1,
a ’majority’ cluster at t = 0. This cluster can skew the result-
ing distribution by attracting the rest of the population closer
to their position. Increasing β exacerbates this effect, leading
to the conclusion that the initial distribution of opinions, not
just in values but also in ’clusters’ has an immediate effect on
the limit distribution when β is high. A fringe majority cluster
in the population can pull the rest of the network towards their
opinion because they can practice their conservatism by vis-
iting each other and ignoring the rest of the network, which
given enough time, starts drifting towards the cluster. It is
possible that this effect cancels out if there is a large number
of agents, as groups of extreme agents on opposite sides neu-
tralize each other, but the combination of a large number of
agents and high β does not converge in a reasonable amount
of time.

5. CONCLUSION

This paper presented a model of state-dependent opinion dy-
namics, where agents are more likely to communicate with
others who carry a similar opinion to theirs or who are popu-
lar in the society. We have shown that the resulting dynamical
system converges to a consensus and that the rate of conver-
gence correlates negatively with the level of conservatism in
society and positively with popularity. Preliminary simula-
tion results suggest that society loses its ability to combine
information correctly as the level of conservatism increases,
and that the so-called Super Star behavior, where agents are
inclined to follow agents who are popular in society leads to
uncertain outcomes. Current work focuses on deriving an an-
alytical expression for the limiting opinion distribution.
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