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ABSTRACT

In this paper, we examine the problem of throughput maximiza-
tion in an energy-harvesting two-hop amplify-and-forward relay net-
work. This problem is investigated over a finite time horizon and in
an online setting, where the causal knowledge of the harvested en-
ergy and that of fading are available. We use Markov decision pro-
cess (MDP) formulation to present a mathematically tractable solu-
tion to the throughput maximization problem. In this solution, op-
timal power-use policy is obtained using backward induction algo-
rithm of the corresponding discrete dynamic programming problem.
We also present properties of the optimal policy for an important
special case, where the power control at transmitters is limited to
on-off switching. These properties facilitate the implementation of
the MDP based solution. Our numerical simulations show that the
proposed method outperforms existing solutions to this problem.

1. INTRODUCTION

The proliferation of wireless devices and the spread of wireless
communication networks render the task of energy supply an ever-
growing challenge. Reliable and sustainable energy sources should
be deployed to guarantee effective performance of wireless net-
works. In this regard, energy harvesting technologies are emerging
as promising solutions. Such technologies enable wireless devices to
benefit from sustainable and theoretically unlimited energy sources
that are present in their surrounding environment. The random na-
ture of ambient energy sources and the need for power efficiency
necessitate design of novel and efficient power-use policies.

Designing efficient energy-harvesting communication systems
is a relatively new research topic. In [1], the information theoretic ca-
pacity of an additive white Gaussian noise (AWGN) channel with an
energy harvesting transmitter is derived. The problem of transmis-
sion time minimization is studied in [2], where an energy-harvesting
setting is considered for a point-to-point communication system .
In [3], the authors investigate the problem of short-term throughput
maximization for a wireless link with a rechargeable transmitter

In [4– 6], for two-hop communication systems with energy har-
vesting nodes, the problem of throughput maximization is studied
in a single-relay setting, where it is assumed that the non-causal
knowledge of the energy harvesting profiles of transmitting nodes
is available prior to start of the transmission. In [7], the problem of
throughput maximization is studied for the Gaussian relay channel
with energy harvesting constraints. The authors of [7] assume that
the relay operates in half-duplex mode and that it uses the decode-
and-forward (DF) relaying protocol. The work in [7] is extended to
the case of buffer aided link-adaptive relaying systems in [8]. In [9],
the authors examine joint relay selection and power allocation for
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Fig. 1: A single-relay two-hop network with energy harvesting
nodes.

throughput maximization in an amplify-and-forward (AF) relay net-
work in an off-line setting. The authors of [10] study a problem
similar to that considered in [9] for a single-relay case and propose
an alternative solution to tackle the throughput maximization prob-
lem. In [11], using Markov decision process (MDP), the problem
of maximizing the rate of information transfer is investigated for a
single-link communication system.

The main focus of the aforementioned studies in energy-
harvesting cooperative communication systems is to investigate
the system in an off-line setting. To the best of our knowledge no
mathematically tractable solution has been introduced to tackle this
problem in the on-line setting, where only the causal knowledge of
harvested energy and that of fading channel are available. Due to the
practical importance of the on-line setting case, we herein propose
an MDP-based approach to find the power-optimal transmission
policies and derive certain properties of the optimal solution in such
a setting.

This paper is organized as follows. The system model is pre-
sented in Section 2. Section 3 includes the MDP formulation for the
throughput maximization problem in the online setting and presents
certain properties of the optimal transmission policy in the special
case of on-off power control. Simulation results are presented in
Section 4. Concluding remarks are presented in Section 5.

2. SYSTEMMODEL

The system under consideration is an energy-harvesting two-hop re-
lay network illustrated in Fig. 1. This network consists of an energy-
harvesting source (S), an energy-harvesting relay (R) and a desti-
nation (D). The source-relay (S-R) and the relay-destination (R-D)
channels are assumed to be statistically independent. The transmis-
sion occurs over a time block comprising of N transmission inter-
vals, each of length 2T . Each transmission interval includes two
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time slots. In the first time slot, the source transmits its message to
the relay. In the second time slot, the relay amplifies and re-transmits
the signal received from the source. We assume that the rate of trans-
mission of the source and that of the relay can be changed, adap-
tively, by changing the transmission power. We will use the AWGN
channel capacity expression in [12] as a measure for the rate of the
transmission.

At the beginning of the i-th transmission interval, the source and
the relay harvest Es(i) and Er(i) units of energy. We assume that
the power usage for purposes other than transmission is negligible
compared to the transmission power. At the beginning of the i-th
interval, the energy stored in the battery of the source and that of
the relay is denoted as Bs(i) and Br(i), respectively. The battery of
the source (relay) has a limited capacity of Bmax

s (Bmax
r ) units of

energy. The data buffer size of the relay is assumed to be infinite so
there will be no data loss due to limited data storage capacity in the
relay.

During the i-th transmission interval, using power ps(i), the
source transmits the signal xs(i) which is given by

xs(i) =
√

ps(i)m(i). (1)

Here, m(i) is the i-th transmitted message with E{|m(i)|2} = 1,
where E{·} denotes the statistical expectation. The signal yr(i) re-
ceived at the relay and the corresponding SNR can, respectively, be
expressed as

yr(i) = hsr(i)
√

ps(i)m(i) + nsr(i) (2)

SNRr(i) =
|hsr(i)|2ps(i)

σ2
sr

(3)

where nsr(i) is the additive Gaussian noise with zero mean and vari-
ance σ2

sr and hsr(i) is the channel coefficient of the S-R link. In the
second time slot of the i-th interval, the relay transmits signal xr(i)
with power pr(i) which is given by

xr(i) =

√
pr(i)

ps(i)|hsr(i)|2 + σ2
sr

yr(i). (4)

The signal received at the destination, yd(i), and the corresponding
SNR are, respectively, expressed as

yd(i) =α(i)
√

ps(i)hrd(i)hsr(i)m(i)

+ α(i)hrd(i)nsr(i) + nrd(i) (5)

SNRd(i) =
γsr(i)ps(i)γrd(i)pr(i)

γsr(i)ps(i) + γrd(i)pr(i) + 1
(6)

where hrd(i) is the channel coefficient of the relay-destination (R-
D) link, γsr(i) � |hsr(i)|2/σ2

sr and γrd(i) � |hrd(i)|2/σ2
rd. The

throughput of the system in the i-th transmission interval is given by

R(ps(i), pr(i)) =
1

2
log

(
1 +

γsr(i)ps(i)γrd(i)pr(i)

γsr(i)ps(i) + γrd(i)pr(i) + 1

)
(7)

where the factor 1/2 is due to the half-duplex operation mode in the
relay. This concludes our system model.

3. THROUGHPUTMAXIMIZATION USINGMDP
FORMULATION

In this section, using causal knowledge of fading and that of the
harvested energy, we aim to find the optimal transmission policy at

the source and at the relay such that the average total throughput of
the network is maximized. Although, the optimal solution can be
obtained using dynamic programming, such a solution is in general
computationally prohibitive to implement since the number of possi-
ble states of system at each transmission interval is infinite. To over-
come this issues, we use discrete dynamic programming by casting
the optimization problem as a Markov decision process (MDP).

We hereafter assume that during each transmission interval, the
source has full knowledge of battery levels at both nodes and that of
the channel states of both S-R and R-D links. The MDP formulation
consists of the following components:

1) State Space: The state space S is defined as

S � Bs ×Br × Gsr × Grd (8)

where Bs � {0, Bmax
s /n, · · · , Bmax

s } is the set of possible battery
levels at the source and Br � {0, Bmax

r /n, · · · , Bmax
r } is the set of

battery levels at the relay. The parameter n determines the number
of possible battery levels at the source and at the relay. Moreover,
Gsr � {g1sr, g2sr, · · · , gmsr } and Grd � {g1rd, g2rd, · · · , gmrd} are the
sets of states corresponding to an m-state first-order Markov chain
representing the S-R and the R-D links, respectively. The first-order
Markov chain is an accurate model for slow fading channels [13].
The size of the resulting state space S is (n+ 1)2m2.

At the i-th transmission interval, the state of the system is given
by

si = (Bs(i), Br(i), Gsr(i), Grd(i)) (9)

where Bs(i) and Br(i) represent the battery levels of the source and
that of the relay in i-th transmission interval, respectively, while
Gsr(i) and Grd(i) are the states of the S-R and R-D channels, re-
spectively.

2) Action space: The set of allowable actions associated with the
state s, is denoted by As and is defined as

As � {(0, 0), (0, Bmax
r /nT ), (Bmax

s /nT, 0),

(Bmax
s /nT, Bmax

r /nT ), · · · , (bs/T, br/T )}. (10)

Since choosing the action a = (as, ar) in the i-th transmission in-
terval is equivalent to setting ps(i) = as and pr(i) = ar, the set Asi

is determined by the battery levels of the source and the relay. The
action space is defined as

A =
⋃
s∈S

As (11)

We denote the sample space of the random variable corresponding
to the harvested energy at the source (relay) by Es (Er). We assume
that Es and Er are discrete and finite, that is

Es � {0, emin
s , · · · , kemin

s }, Er � {0, emin
r , · · · , kemin

r }

where emin
s and emin

r are the smallest non-zero energy packets
that can be harvested at the source and at the relay, respectively.
Throughout the transmission, the energy stored in the source battery
and that stored in the relay battery are changing as

Bs(i) =fs(Bs(i− 1), ps(i− 1), Es(i))

�min{Bs(i− 1)− Tps(i− 1) + Es(i), B
max
s } (12)

Br(i) =fr(Br(i− 1), pr(i− 1), Er(i))

�min{Br(i− 1)− Tpr(i− 1) + Er(i), B
max
r } (13)

where Bs(0) and Br(0) correspond to the initial energy stored in
the source and the relay batteries, respectively. The battery levels
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and the allowable actions are chosen such that for any action a =
(as, ar) ∈ A, ∀es ∈ Es, ∀er ∈ Er, ∀bs ∈ Bs and ∀br ∈ Br, we have

min{bs − Tas + es, B
max
s } ∈ Bs, for i = 1, · · · , N

min{br − Tar + er, B
max
r } ∈ Br, for i = 1, · · · , N.

3) Reward: The reward function in the i-th transmission interval
is the throughput of the system which is a function of the current
state of the system state si and the action ai. It is given in (14).

4) Transition Probability: The transition probability, denoted by
pi(s

′|s,a), is the probability that in the (i+1)-th transmission inter-
val, the system will end up in state s′ = (b′s, b

′
r, g

′
sr, g

′
rd) ∈ S , given

that in the i-th interval, the system is in state s = (bs, br, gsr, grd) ∈
S and that the action a = (as, ar) is taken. This probability is given
by

pi(s
′|s,a) =Pr{si+1 = s′|si = s,ai = a}

=Pr{Bs(i+ 1) = b′s|Bs(i) = bs, ps(i) = as}
×Pr{Br(i+ 1) = b′r|Br(i) = br, pr(i) = ar}
×Pr{Gsr(i+ 1) = g′sr|Gsr(i) = gsr}
×Pr{Grd(i+ 1) = g′rd|Grd(i) = grd} (15)

where the last two terms are the transition probabilities of the first-
order Markov chain which models the fading channel. Using the to-
tal probability theorem and by conditioning on the harvested energy,
the transition probability in (15) can be re-written as

pi(s
′|s,a) =

∑
es∈E

Pr{Es(i+ 1) = es}I(fs(bs, as, es) = b′s)

×
∑
er∈E

Pr{Er(i+ 1) = er}I(fr(br, ar, er) = b′r)

× Pr{Gsr(i+ 1) = g′sr|Gsr(i) = gsr}
× Pr{Grd(i+ 1) = g′rd|Grd(i) = grd}. (16)

where I(·) is the indicator function and is equal to one if its argument
is true and zero otherwise.

A decision rule di(s) : S → As is a function that determines
the action to be taken when the system is in state s at the i-th trans-
mission interval. A policy π = {d1(s1), · · · ,dN (sN )} is a se-
quence of decision rules for all transmission intervals. If the policy
π = {d1(s1), · · · ,dN (sN)} is used, the reward-to-go function at
the i-th interval (i.e., the summation of the expected reward from the
i-th interval to the last interval) is given as

uπ
i (si) = ri(si,di(si)) +

∑
s′∈S

pi(s
′|si,di(si))u

π
i+1(s

′),

for i = 1, · · · , N − 1 (17)

uπ
N (sN) = rN(sN ,dN(sN )). (18)

Our goal is to find the optimal policy which maximizes the ex-
pected total reward of the system over N transmission intervals, i.e.,
uπ
1 (s1). Using (17) and (18), the optimality equations (also known

as the Bellman equation) can be written as [14]

u∗
i (si) = max

a∈Asi

{
r(si,a) +

∑
s′∈S

pi(s
′|si,a)u∗

i+1(s
′)

}
,

for i = 1, · · · , N − 1 (19)

u∗
N (sN) = rN(sN , (

Bs(N)

T
,
Br(N)

T
)). (20)

Note that (20) implies that in the last transmission interval, the opti-
mal action is to use up all the available energy in the battery of the
source and that of the relay.

Since for every state in state space, the action set As is finite and
the reward function is bounded, a deterministic Markovian policy
satisfying (19) and (20) exists. To find this optimal policy, we use
the backward induction algorithm [14] presented in Algorithm 1.

Algorithm 1 The Backward Induction Algorithm
1. Set i = N and

u∗
N (sN) = rN (sN , (

Bs(N)

T
,
Br(N)

T
)) ∀sN ∈ S .

2. Set i = i− 1 and compute u∗
i (si) and d∗

i (si) for ∀si ∈ S as

u∗
i (si) = max

a∈Asi

{
r(si, a) +

∑
s′∈S

pi(s
′|si,a)u∗

i+1(s
′)

}
(21)

d∗
i (si) = arg max

a∈Asi

{
r(si,a) +

∑
s′∈S

pi(s
′|si,a)u∗

i+1(s
′)

}
.

(22)

3. Stop if i = 1 otherwise go to step 2.

An important special case which is worth considering is when
the power control in the transmitting nodes (i.e., in the source and
the relay) is limited to on-off switching. In such a setting, the action
set is binary and it is given by

A = {a0 = (0, 0),a1 = (Ps, Pr)} (23)

where Ps and Pr are fixed transmission powers satisfying Ps ≤
Bmax

s /T and Pr ≤ Bmax
r /T . In the sequel, we will show that in

case of such a binary action space, the optimal actions have a special
structure which facilitates the implementation of the backward in-
duction of algorithm. The following theorems are presented for the
case of block fading channels, that is, when channel levels in each
transmission interval are statistically independent of those in other
intervals.

Theorem 1: In the case of block fading channels and a binary
action set, if for some certain state ŝi = (b̂s, b̂r, ĝsr, ĝrd), d∗

i (ŝi) =

a1 then for si ∈ {s = (bs, br, gsr, grd) | bs = b̂s, br = b̂r, gsr ≥
ĝsr, grd = ĝrd}, d∗

i (si) = a1.
Proof: The proof is omitted due to space limitations. See [15].

�
With a slight change in the statement, a similar theorem can be

obtained for the R-D channel level.
Theorem 2 : In the case of block fading channels and a binary

action set, if for some certain state ŝi = (b̂s, b̂r, ĝsr, ĝrd), d∗
i (ŝi) =

a1 then for si ∈ {s = (bs, br, gsr, grd) | bs = b̂s, br = b̂r, gsr =
ĝsr, grd ≥ ĝrd}, d∗

i (si) = a1.
Proof : The proof is omitted due to space limitations. See [15].

�
The results of Theorems 1 and 2 can be used to simplify the

backward induction algorithm. Indeed, if for a specific state ŝ
in the S , the optimal action in the i-th transmission interval is
equal to a1, then without the need for any further calculations,
the optimal actions for any state belonging to either of the sets
{s = (bs, br, gsr, grd) | bs = b̂s, br = b̂r, gsr ≥ ĝsr, grd = ĝrd} or
{s = (bs, br, gsr, grd) | bs = b̂s, br = b̂r, gsr = ĝsr, grd ≥ ĝrd} can
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ri(si,ai) =
1

2
log

(
1 +

Gsr(i)as(i)Grd(i)ar(i)

Gsr(i)as(i) +Grd(i)ar(i) + 1

)
for i = 1, · · · , N (14)

be set to a1. This significantly speeds up the implementation of the
backward induction algorithm.

4. SIMULATION RESULTS

In this section, we examine the numerical performance of the our
MDP formulation in two scenarios of general and limited (on-off)
power control, and compare the results to that of the harvesting rate
(HR) assisted scheme introduced in [9]. The results of the alter-
nating convex search algorithm (ACS) presented in [10] serve as a
performance benchmark. For the general scenario n = 10 is chosen.
Furthermore, it is assumed that Es(i) and Er(i) can independently
take values from the ternary set {0, H, 2H} with equal probability.
The battery capacity of the source and that of the relay are set to 5H .

The simulations are carried out for two channel models: the
block fading channel and the correlated channel. In the block fading
scenario, the channel coefficients are independently and identically
distributed according to an exponential distribution with an average
of one. The correlated channel is simulated using the inverse dis-
crete Fourier transform approach introduced in [16]. The maximum
Doppler frequency is set to fd = 8Hz and fdT = 0.04. For both
scenarios, the channels are modeled as a first order Markov chain
with 10 states using the equal-probability steady state-distribution
proposed in [17]

For the case of block fading channels, in Fig. 2, the throughput
of the system is depicted versus the average energy harvesting rate. It
can be clearly seen that the performance of the MDP-based method
in the general case approaches the performance of the benchmark
method and is superior to the other on-line solution.

Fig. 3 demonstrates the total throughput of the system versus the
average energy harvesting rate for different online solutions as well
as the performance benchmark in case of a correlated channel. As
can seen from this figure, the performance of our MDP formulation
approaches that of the benchmark and it is significantly better than
the other on-line algorithm.

5. CONCLUSION

In this work, we tackled the problem of maximization of the total
throughput of an energy-harvesting amplify-and-forward two-hop
network in an on-line setting. We proposed using Markov decision
process (MDP) to convert the optimization problem into a discrete
dynamic programming problem which is a mathematically tractable
basis to determine the optimal power-use policies. We also exam-
ined an important special case where the transmitters can either be
silent (off) or transmit with a fixed power (on). Certain interesting
properties of the optimal transmission scheme are derived. These
properties can facilitate the implementation of the MDP-based solu-
tion. Simulation results demonstrate the superiority of our presented
formulation compared to the only existing method which studies the
on-line energy harvesting.
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Fig. 2: Throughput curves versus average energy harvesting rate for
different online algorithms and for the performance benchmark for
block fading channel case.
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Fig. 3: Throughput curves versus average energy harvesting rate for
different online algorithms and for the performance benchmark for
correlated channel.
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